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In recent years, hardware advances have brought shared-memory (a.k.a., multicore) parallelism
to the mainstream. Now, nearly every computing device is a parallel computer, ranging from phones
with a few cores to high-end machines with thousands. To benefit from continuing improvements
in multicore processors, programmers have to expose parallelism in their applications. Fortunately,
there are plenty of applications that stand to benefit from multicore parallelism, such as multimedia
processing, computer games, small-scale simulations, graph analytics, build systems and compilers,
etc. Yet, in a great deal of modern software development, parallelism remains a specialist activity,
and not the default, as is desirable.

Part of the reason may be that the there is a premium to minimize the time to develop an
application, as well as other factors, such as to write in a declarative style, to structure code for
reuse and readability, etc. As such, programmers rely on high-level programming languages and
abstractions in their programs. Programming languages can offer a great deal by supporting natural
programming idioms and ease of programming. However, both supporting programs in high-level
languages and achieving efficient parallel programs remains challenging: modern software often
entails workloads that are irregular and hard to predict, e.g., as is typical in data analytics workloads
or in any computation involving sparse matrics and real-world graphs. Moreover, such applications
expose parallelism at different levels, leading naturally to nested parallelism, e.g., by nesting of
parallel loops or recursive calls. Research on parallel programming languages has addressed these
concerns by integrating parallelism deep into either the compiler, the runtime system, or both, as
represented by the Cilk extensions to C++ [1] and languages, such as X10 [2], Haskell [3], Data-
Parallel Haskell [4], etc.

My research focuses on both enhancing programmer productivity and improving program per-
formance, especially concerning task parallelism. I focus on issues relating to scheduling parallel
tasks efficiently on cores, but also on language design for task parallelism, and, more recently, on
language support for accessing serialized data formats. In my work, I use techniques from both the
programming languages and parallel algorithms communities. Of particular importance for my work
is the use of language-based cost models, as exemplified by the work of Guy Blelloch [5, 6]. This
approach has enabled scheduling techniques I have introduced, such as Heartbeat Scheduling, to be
backed by end-to-end performance bounds, which crucially apply to all programs and all inputs, a
property I believe to be crucial to achieve a future where parallel programming is ubiquitous.

1 Granularity control

Programmers using task-parallel languages to target multicore systems could increase their produc-
tivity if it were possible to simply express all opportunities for parallelism in their applications, no
matter how fine or coarse grained. In the current state of the art, however, such fearless paral-
lelization comes with significant performance risks. The problem is that it is not always profitable
to exploit every opportunity for parallelism. Parallelize too much, and the program may be much
slower than a serial program. But parallelize too little, and cores may be underutilized. Finding a
balance between these two extremes, and doing so consistently, is one of the keys to expanding the
scope of parallel programming in the multicore era.

Granularity control has received much attention in the research literature, from the 80’s to the
present [7, 8, 9, 10, 11, 12, 13]. Basic approaches include “outer parallelism”, whereby only the
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outermost loops or calls are parallelized, and “manual pruning”. Outer parallelism suffices when
there is guaranteed to be large amounts of parallelism in outer loops, but falls short when used
for modern multicore software, which often features highly irregular parallelism. Use of manual
pruning fails for similar reasons, as well as reasons of performance portability: threshold settings
that perform well on one platform may not on another [10]. There are more sophisticated heuristics
that involve varying levels of compiler and runtime techniques. But such heuristics suffer from worst-
case inputs, which can be difficult to diagnose. This situation complicates the job of performance
engineering: any given performance deficiency could be a consequence of one of many potential
problems, including granularity control. Is there an approach that is backed by suitable formal
guarantees of efficiency and that supports a practical implementation for multicore?

I answered this question in the affirmative by devising Heartbeat Scheduling [14]. The basic idea
of Heartbeat Scheduling is to spawn new tasks only at a beat (i.e., the “heartbeat”), and to make
sure to do useful work in between beats. In an implementation of Heartbeat Scheduling, the program
always starts executing in the conventional, serial fashion, but remembers latent opportunities for
parallelism, e.g., instances of parallel calls and loops, by leaving behind a little bookkeeping. Every
time a task finishes executing a small chunk of its local computation, the language runtime makes
an attempt to liberate some of the latent parallelism by interrupting the task, at which point the
handler inspects the call stack of the task. If it finds some latent parallelism, the handler promotes
the parallelism into a proper task, e.g., by placing a record of the task in a load balancing pool. From
the pool, the task can be executed by a remote core, if migrated by the load balancing algorithm.

In an experimental study, I demonstrated that a prototype implementation performs as well or
better than the state-of-the-art Cilk scheduler across a range of modern benchmarks, and could
do so entirely automatically, requiring no manual grain settings and no special-purpose heuristics.
Crucially, Heartbeat Scheduling is the first solution for granularity control that is backed by end-to-
end upper time bounds, which apply to all task-parallel programs and all inputs. The bounds
guarantee the two key desired properties. First, all task-related overheads are well amortized.
Second, only a marginal amount of parallelism is pruned away, amounting in particular to a small
constant factor decrease in the parallelism of an application. I believe that such performance bounds
are crucial to the success of the approach, because they provide the rigor needed to deliver predictable
performance, and thereby provide the assurance needed to simplify performance engineering for
multicore.

Although the original work on Heartbeat Scheduling demonstrated feasibility for use on commod-
ity machines, there remain two challenges facing adoption. The first challenge concerns programs
that make use of parallelism in the form of fine-grain, nested loops. For such programs, there is a
delicate balance between work efficiency and performance at scale. Striking a good balance requires
precise control over the control flow of the program. The second challenge concerns the practicality
of the signaling mechanism that is needed to drive heart beats as the program runs. To address these
challenges, I helped establish collaboration with specialists in operating systems, compilers, and chip
architecture, and the initial result of this collaboration resulted in a publication, which proposes a
Task Parallel Assembly Language [15]. In our experimental study, we evaluate our technique in
Linux and an experimental kernel framework.

Heartbeat Scheduling is not the only approach backed by formal guarantees. I also helped
devise and implement Oracle Guided Scheduling, a different approach with some complementary
tradeoffs [16, 17, 18]. A recent publication of this work was awarded the SIGPLAN Research
Highlight [18]. In Oracle Guided Scheduling, the idea is to amortize task overheads by predicting
the cost of executing tasks. Our prediction algorithm requires the programmer to annotate their
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functions with asymptotic-cost functions, and to use a small runtime system that collects data
from both the cost functions and the cycle counter. The algorithm uses this data to incrementally
improve granularity, before converging on provably good settings. Although both have the same
goal, Oracle Guided Scheduling and Heartbeat Scheduling are largely complementary: the former
requires programmer annotations but the latter does not, whereas the latter can be implemented as
a standalone library, for any language but the former requires compiler and runtime support.

2 Task scheduling

In task-parallel programming, the order in which tasks are executed and on which processor they
run is determined by the scheduler. The scheduling policy has a major impact on performance and
is therefore the subject of a large body of research. Of the alternatives, perhaps the most popular
and well-studied scheduler is work stealing. Many state-of-the-art implementations of work stealing,
such as that of Chase and Lev [19], use sophisticated concurrent deque data structures, both to
buffer pending tasks and to allow tasks to migrate across processors. Although work stealing with
concurrent deques performs well for many applications, there are some important applications, such
as parallel graph traversal, and there are some languages, such as Parallel ML with split-heap garbage
collection [20], for which concurrent deques do not perform well. Part of the reason is that even a
small modification to the deque data structure is likely to be challenging: it is a delicate concurrent
algorithm whose verification has spanned multiple research works. Useful extensions, such as steal-
half work stealing [21], have been proposed, but such proposals require significant technical work to
design a new concurrent data structure. Furthermore, concurrent data structures impose a costly
fence operation on local accesses, which can harm performance for fine grain parallel applications.

In collaboration with Acar and Chargueraud, I helped with the design and implementation of
work stealing with private deques [22]. In this algorithm, the deque is represented by a conventional,
serial data structure, and tasks are migrated between cores by message-passing communication. We
proved that the algorithm is backed by theoretical guarantees similar to those of state-of-the-art
work stealing with concurrent deques. In experimental work, we demonstrated that our algorithm
performs as well as the state-of-the-art implementation used by Cilk.

These theoretical and practical advances opened a new space for customizable work stealing
variants. In subsequent work, we demonstrated an application of our private-deques algorithm to
in-memory graph traversal [23]. I believe our algorithm remains the fastest algorithm for reachability
analysis of in-memory graphs on multicore systems. A key feature of our algorithm is its robustness
in the face of arbitrary graph structures: for graphs, such as a long chain, for which there is
no available parallelism, our algorithm performs as well as the best serial algorithm, for graphs
with scarce parallelism, our algorithm achieves best possible speedup, and for graphs with abundant
parallelism, our algorithm performs as well or better than the best parallel algorithm. This ability to
scale both up and down is, I believe, a crucial and underrepresented feature of multicore algorithms.

As a byproduct of our graph-reachability work, we also introduced a novel data structure, the
Chunked Sequence [24, 25], which is useful in its own right. A Chunked Sequence provides a
representation of a sequence, with the operations of a double-ended queue, logarithmic-time split,
and logarithmic-time concatenation. Given its collection of operations, the structure is useful for
implementing the frontier of a parallel graph traversal, and is flexible enough to support arbitrary
sequences, interval trees, and dynamic dictionaries. Our Chunked Sequence structure has also been
used in scientific computing, in a plasma simulation application [26].
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3 Language design and implementation

As programming adapts to multicore parallelism, so must programming languages. A major chal-
lenge facing such adaptation relates to the design of language constructs. Languages need constructs
that can harness the various forms of hardware parallelism, yet provide semantics that support high-
level reasoning and modular programming. I began my research career working toward such goals
in the context of the Manticore project [27, 28, 29, 30, 31, 32, 33]. Manticore is a parallel variant of
the functional programming language, Standard ML. In helping with the development of Manticore,
I designed and implemented a new method for handling exceptions in the parallel setting, where a
raised exception can lead to early termination of some tasks. During my PhD, I implemented large
parts of the backend of the Manticore compiler, and its runtime system. The system continues to
serve as a research vehicle for students at the University of Chicago.

In recent work, I helped design the Dag Calculus [34], a new task-based language that features
flexible, high-level control over complex synchronization patterns, such as parallel pipelines and
loosely structured graph traversals. The Dag Calculus was motivated by our realization that some
popular linguistic mechanisms, namely async-finish and parallel futures, are in fact closely related,
and complementary, even though previously they had been designed independently for different
settings (imperative and functional languages, respectively). We demonstrated that Dag Calculus
can efficiently encode synchronization patterns of both async-finish and parallel futures. In follow-
up work, I helped design a lightweight synchronization barrier for async-finish (and by extension,
our Dag Calculus) [35]. Our barrier data structure is based on the Scalable Non-Zero Indicator
(SNZI) concurrent data structure. Our adaptation of SNZI implements a special kind of barrier
synchronization, which allows for existing tasks to add new tasks to a barrier on the fly. Crucially,
we proved that our barrier has amortized constant-time complexity, including contention, which
is a rarity for concurrent data structures, and guarantees efficient synchronization for multicore
applications that use the async-finish pattern.

In an ongoing collaboration, I helped with a novel typed functional language for programming
directly on serialized data. This language has a compiler, named Gibbon [36], and it supports high-
level programming with algebraic data types, a classic feature from typed functional programming,
but in a memory-efficient fashion. Conventional algebraic data types store objects using a pointer-
based representation. Such pointer-based representation is unfriendly to modern chips, which favor
inline, serial access patterns. In our language, tree data structures arising from algebraic data types
are laid out serially, in a format that is much friendlier to modern chips, and can easily move from
in-memory to on-disk storage. The language also supports a mix of pointers and serialized layout,
with a type-safety result that rules out the common pitfalls of programming with complex serialized
data structures. I proved the first type-safety result for the Gibbon type system. A key feature
of the type system is its end-witness logic, which specifies the well-formedness criteria for heap
objects. Continuing this line of work, my coauthors and I extended the language and its metatheory
to support parallelism [37]. In particular, we address the tension between the density of large,
serialized tree structures and the separation required for efficient parallel access of trees in memory.

4 Future work

In the past year, I initiated a collaboration with researchers specializing in algorithms, systems and
compilers at Carnegie Mellon University, Northwestern University, and IIT Chicago. The initial goal
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of our collaboration is to bring Heartbeat Scheduling from prototype to production grade. To this
end, we have focused on two key challenges: the compiler support and the alarm mechanism needed
to provide a regular heart beat. This project has been partly funded by a planning grant from the
National Science Foundation, which we were awarded based on our proposal reporting initial results.
We plan to submit our results for publication soon. Ultimately, I want to see Heartbeat Scheduling
become widely used, for example, as an extension of the OpenCilk code base. Completion of this
work will require further development of compiler support.

High-level languages, and functional ones in particular, are my passion. It has long been my
goal to see functional programming enter into new niche areas of programming. I believe that the
functional language Gibbon and the like can bring functional programming to a new niche area,
such as high-performance and distributed functional programming. The growing interest in this
niche area is exemplified by emerging functional languages, such as Gibbon and Unison [38], which
rethink the relation between language and program data. A key idea is to retain high-level, type-safe
constructs, such as algebraic data types, while enabling low-level control (or tight coupling) with
data layout. A first step toward realizing the promise of such languages is to bring support for
parallelism. My goal is to bring parallelism as the default to Gibbon. I believe that the combination
of automatic granularity control and finer control over serialized data layout can bring functional
languages, such as Gibbon, to a much higher level of performance and productivity, thereby opening
new, attractive use cases, such as parallel compilers and lightweight data analytics tools.

Over the past decade, there have been exciting proposals for parallel languages that support mu-
table data, but guarantee deterministic-by-construction semantics, which has great potential for im-
proving safety and enhancing programmer productivity. Such language proposals include LVars [39]
and Concurrent Revisions [40]. Although both have mature theoretical foundations, neither has
gained widespread support in general-purpose programming. One major hurdle is performance.
Both approaches require sophisticated support from the compiler and runtime, and currently state-
of-the-art techniques deliver performance that is poorer than lower-level, unsafe methods. I want to
explore compilation and runtime approaches, such as fine-grain blocking, and extensions of Heartbeat
Scheduling that can significantly raise the efficiency of LVars and Concurrent Revisions.

To fully harness multicore systems, it is essential to utilize SIMD instructions. Recent work
by Ren et al. proposes a new method for extracting SIMD parallelism from recursive task-parallel
programs [41]. This work is exciting for me because it frames the problem of SIMD parallelization
as a task-scheduling problem. As such, I believe there is a path to integrate it with my current
approach to Heartbeat Scheduling. The goal is to have compiler and runtime support that can both
utilize Heartbeat Scheduling and SIMD parallelism from high-level task-parallel codes, such as those
of Cilk.
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tically efficient granularity control. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, PPoPP ’19, pages 214–228, New York, NY, USA, 2019. ACM.

[19] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In SPAA ’05, pages 21–28,
2005.

[20] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. Manticore: A
heterogeneous parallel language, 2007.

[21] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues. In Proceedings of the
twenty-first annual symposium on Principles of distributed computing, pages 280–289, 2002.
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[26] Yann Barsamian, Arthur Charguéraud, Sever A. Hirstoaga, and Michel Mehrenberger. Efficient
strict-binning particle-in-cell algorithm for multi-core simd processors. In Marco Aldinucci, Luca
Padovani, and Massimo Torquati, editors, Euro-Par 2018: Parallel Processing, pages 749–763,
Cham, 2018. Springer International Publishing.

7



Research Statement Mike Rainey May 2021

[27] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly-threaded parallelism in
manticore. In The 13th ACM SIGPLAN International Conference on Functional Programming,
volume 43 of ICFP ’08, pages 119–130. ACM, 2008.

[28] Matthew Fluet, Mike Rainey, and John Reppy. A scheduling framework for general-purpose
parallel languages. In The 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, volume 43 of ICFP ’08, pages 241–252. ACM, 2008.

[29] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded parallelism in
manticore. volume 20, pages 537–576. Cambridge University Press, 2010.

[30] Mike Rainey. Effective Scheduling Techniques for High-Level Parallel Programming Languages.
PhD thesis, University of Chicago, 8 2010.

[31] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex. The MIT Press, 2009.

[32] Lars Bergstrom, Mike Rainey, John Reppy, Adam Shaw, and Matthew Fluet. Lazy tree splitting.
In The 20th ACM SIGPLAN International Conference on Functional Programming, volume 45
of ICFP ’10, pages 93–104. ACM, 2010.

[33] Lars Bergstrom, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and Adam Shaw.
Data-only flattening for nested data parallelism. In 18th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, volume 48 of PPoPP ’13, pages 81–92. ACM,
2013.
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