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Outline

I Background: design and analysis of parallel algorithms
I Scheduling parallel algorithms on multiprocessor machines
I Scheduling by work stealing
I Implementation of work stealing
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Implicit parallelism

Divide and conquer style is typical for parallel algorithms.

type tree =
| Leaf of int
| Node of tree * tree

let rec sum t =
match t with
| Leaf n -> n
| Node (t1,t2) ->
(* allow recursive calls to go in parallel *)
let (n1, n2) = (| sum t1, sum t2 |) in
n1 + n2
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Visualizing the task graph

parallel tuple expression series-parallel DAG

sum (Node (Leaf 5, 
      Node (Leaf 23, 

             Leaf 8))) 23 8

+

5

+
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Series-Parallel DAGs

SP DAGs are built inductively from:

G

G1

G2

G1 G2

task serial composition parallel compositiongraph

data / control
dependency

fork task

join task
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Work and span in SP DAGs
We use SP DAGs as basis for a cost model to estimate benefit of

parallelism.

span
= length of

 critical path

work
= number of

nodes

(convention: from hereon, 
edges will always point 

down implicitly)
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The sum function applied to a balanced tree with 16
leaf nodes.
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Defining costs

Let TP denote the time to execute a given SP DAG with P processors.

I T1 corresponds to the work.
I T∞ corresponds to the span.
I Speedup with P processors is T1

TP
.

I Speedup P means “perfect linear”.
I Speedup 1 means adding more processors does not help.
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The average parallelism

The average parallelism Pavg is T1
T∞

, the ratio of work and span.

I Average parallelism represents the maximum speedup regardless
of # processors.

I Proof:
I Speedup = T1

TP
I TP ≥ T∞, for any P
I Therefore, speedup ≤ T1

T∞

I We can use Pavg to
I estimate how parallel a given algorithm is
I compare parallelism of different algorithms

I Examples:
I sum (balanced tree): large Pavg
I sum (unbalanced tree): small Pavg
I list-based mergesort: small Pavg
I tree-based quicksort: large Pavg
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Complexity of sum

I Suppose the input tree contains n leaves and has height h.
I T1 = O(n)
I T∞ = O(h)

I Example 1: the input tree is balanced (h = log2 n)
I Large average parallelism Pavg = O( n

log n )

I For instance, if n = 220, then Pavg = 220

20 ≈ 100,000.
I That is more than enough parallelism to utilize many processors.

I Example 2: the input tree is not balanced (h = n, e.g., a list)
I Small average parallelism Pavg = 1.
I No benefit from having more than one processor.
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Merging two sorted lists

let rec merge (xs : int list, ys : int list) =
match (xs, ys) with
| ([], ys) -> ys
| (xs, []) -> xs
| (x::xs, y::ys) ->
if x < y then
x :: merge (xs, y::ys)

else
y :: merge (x::xs, ys)
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List-based mergesort

let rec mergesort (xs : int list) =
match xs with
| [] -> []
| [x] -> [x]
| xs ->

let med = length xs / 2 in
let (left, right) =

(take med xs, drop med xs) in
merge (| mergesort left, mergesort right |)
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Complexity of mergesort

n/2

n/8
n/4

T∞ = 

2cn

n/2

n/4

n

n

input list length = n

T1 = cn log n 

c is some 
constant
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Parallelism of mergesort

I Then the average parallelism Pavg = cn log n
2cn = log n

2 .

I If n = 220, then Pavg = log 220

2 = 10.
I That is terrible: greatest speedup we can ever hope to achieve is

10x.
I Can we do better?

I There exists a parallel functional mergesort with
I T1 = O(n log n)
I T∞ = O(log3 n)
I Pavg = O( n

log2 n )

I Basic ideas:
I balanced trees (or arrays) instead of linked lists
I parallelize the merging phase

I See Blelloch & Greiner 1995 for more details.
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Tree-based quicksort
type tree = Empty | Leaf of int | Node of tree * tree

let append (xs, ys) =
match (xs, ys) with
| (Empty, ys) -> ys
| (xs, Empty) -> xs
| _ -> Node (xs, ys)

let rec filter (f : int -> bool) (xs : tree) =
match xs with
| Empty -> Empty
| Leaf x -> if f x then Leaf x else Empty
| Node (xs, ys) ->
let (xs’, ys’) =
(| filter f xs, filter f ys |) in

append (xs’, ys’)
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Tree-based quicksort

let rec quicksort (xs : tree) =
match xs with
| Empty -> Empty
| Leaf x -> Leaf x
| _ ->

let pivot = first xs in
let less = filter (fun x -> x < pivot) xs in
let greater = filter (fun x -> x > pivot) xs in
let equal = filter (fun x -> x = pivot) xs in
let (left, right) =
(| quicksort less, quicksort greater |) in

append (left, append (equal, right))
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Complexity of quicksort (assuming the input tree is
balanced)

T∞
= O(log2n)

O(log (n/2))

T1 = O(n log n)

Pavg = O((n log n) / log n) = O(n / log n)    (good!)

O(logn)

O(log (n/4))

O(log (n/8))
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Summary

T1 T∞ Pavg
sum (balanced trees) O(n) O(log n) O( n

log n )

sum (unbalanced trees) O(n) O(n) O(1)
mergesort O(n log n) O(n) O(log n)
quicksort O(n log n) O(log2 n) O( n

log n )

I Lists are bad.
I Trees are good.
I List-to-tree adaptation gives good results for a number of

algorithms.
I Sometimes algorithms need to be redesigned.
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Scheduling SP DAGs on multiprocessor machines

I Scheduling is mapping suparts of SP DAGs to finitely-many
processors.

I Goal: to minimize execution time.
I Scheduler discovers the structure of the SP DAG as it goes.

I i.e., online scheduling
I The scheduling policy

I determines order in which tasks are executed
I mappings from tasks to processors
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Greedy scheduling policies
A greedy scheduler is a scheduler in which no processor is idle if there

are ready tasks.

executed

ready

waiting

executing

number of processors P = 2not yet created
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What’s good about the greedy scheduler

Recall: TP denotes execution time on P processors

I Observation 1: TP ≥ T∞
I can go no faster than length of critical path

I Observation 2: TP ≥ T1
P

I can go no faster than having all processors always busy
I Brent’s Theorem: TP ≤ T1

P + T∞

I Theorem says that we can get close to optimal execution time
(within factor of two).
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When to expect linear speedups

Recall:
I Pavg = T1

T∞
.

I Brent’s Theorem: TP ≤ T1
P + T∞

Therefore:
I Suppose that Pavg � P ⇔ T1

T∞
� P ⇔ T1

P � T∞.
I This case is often called “parallel slackness”.

I With parallel slackness, the first term in Brent’s Theorem
dominates.

I So, we have TP ≈ T1
P .

I i.e., linear speedup
I Observation: This prediction is valid for our model, where

scheduling costs are not reflected.
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Designing a greedy scheduling policy

First idea: maintain ready tasks in a shared queue.

I When a processor needs a new task, it grabs one from the queue.
I When a processor forks a task, it puts the task on the shared

queue.
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Problem with the shared queue

nil

P1 P2 P3 P4processors

lock

I Benefits of parallelism are obliterated because processors spend
a lot of time waiting to access the queue.
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Work stealing

I Each processor maintains the ready tasks that it has created in
what is called a deque.

I Processors usually push and pop on their own deques.
I If a given processor’s deque is empty, then the processor pops

from the non-empty deque of another processor (if any).
I called “stealing”

I There is an extensive literature on work stealing.
I Burton and Sleep 1981; Halstead 1984; Mohr et al. 1990; Carlisle,

et al. 1995; Leiserson, et al. 1995,1999; Arora et al. 1998; Acar et
al. 2000; Danaher et al. 2005,2006; Agrawal and Leiserson 2008;
Spoonhower 2010

Arthur Charguéraud and Mike Rainey 25



Work stealing deques

P1 P2 P3processors

push pop push pop

deques
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Work stealing steal

P1 P2 P3processors

push pop push pop

deques pop
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Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1
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Example of work stealing
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Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1
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Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

P1 gets to the
 join task first
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Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P2

P1

P1 goes idle
(starts trying to steal)
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Example of work stealing: handling join tasks
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the continuation
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Arthur Charguéraud and Mike Rainey 42



Example of work stealing: handling join tasks
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The benefit of work stealing

Recall:
I Brent’s theorem TP ≤ T1

P + T∞

I When T1
T∞
� P, we can expect linear speedup: TP ≈ T1

P .
But!

I We have to assume that ready tasks can be found efficiently.
I Work stealing achieves this because most of the time the ready

task is in the local deque.
I Rarely does a processor have to steal.

I Suppose we have the thief processor always pick its victim
uniformly at random.

I Blumofe and Leiserson (1995) show that, with high probability,
expected total # of steals ≤ O(T∞P).

I So, we want T∞P � T1, which is equivalent to T1
T∞
� P.
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The work-first principle for designing efficient
implementations of work stealing

scheduling costs = stealing costs + non stealing costs
(non local) (local)

(rare) (common)

Work-first principle (Frigo et. al. 1998): minimize the second term in
the sum above because it represents the common case.
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Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

(t2 was stolen)
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Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 ? 1 k

expensive atomic
add to prevent race

Arthur Charguéraud and Mike Rainey 47



Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 x2 2 k

expensive atomic
add to prevent race
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Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 x2 2 k

start evaluating
 k (x1, x2)
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Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2
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Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2popped task t2
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Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2

(fun x2 -> k (x1, x2)) t2

start evaluating t2:
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Making deques more efficient than using a lock

I There is a potential race in stealing because both thief and victim
can try to pop from deque simultaneously.

I Using locks would be too expensive.
I There are some better approaches:

I Private deques
I Shared deques
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Private deques
I Each processor has sole read / write access to its own deque.

I Stealing is handled by message passing.
I Designs investigated in Multilisp, ADM, and Manticore.

I Local deque access is cheap.
I Protecting deques from races is trivial: just delay handling a

message while deque is in inconsistent state.
I Message-passing can be implemented on top of software polling

or OS interrupts.
I In any case, busy processors always pay a cost for handling

signals.
I We need to avoid the case where busy processors are sent too

many messages.
I We can avoid sending unecessary messages by having each

processor maintain a flag indicating if its deque is empty.
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Shared deques
I Each processor has exclusive read / write access to the top of its

own deque; all processors have read / write access to the bottom
of the deque.

I Synchronization is handled by Dijkstra-style mutual exclusion
protocol (Frigo et. al. 1998).

I Designs investigated in Multilisp, Cilk, and Hood.
I Non-blocking deques are crucial in the setting where processors

are shared between work stealing and other processes.
I Several papers investigate non-blocking deques.

I Blumofe et. al. 1998
I Nir & Shavit 2005
I Tang et. al. 2010

I Presentations of concurrent deque algorithms assume sequential
consistency.

I Modern multicore machines usually have relaxed memory
consistency models.

I For such machines, expensive memory fences are required to
prevent race condition.
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Comparing shared and private deques

I In private-deque approach, we can easily avoid costly memory
fences, whereas we cannot in existing shared-deque approaches.

I Stealing is more expensive with with private deques because of
message-passing overhead.

I Stealing costs are arguably of minor importance, because we
expect the common case is that # steals is negligable.

I Handling deque overflow is trivial with private deques; special
concurrency protocol is necessary for shared deques (Nir & Shavit
2005).
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Summary

I We introduced SP DAGs to model performance.
I We compared the parallelism of two tree-based and one list-based

algorithms.
I We found that the tree-based algorithms naturally exhibit more

parallelism than list-based ones.
I We studied the class of greedy schedulers and found that:

I Execution time TP ≤ T1
P + T∞

I When Pavg � P, we achieve linear speedup.
I In practice, work stealing gets close to the bound above because

it minimizes costs of managing ready tasks in common case.
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Parallel merge
l1 l/2

≤ x ≥ x

≤ x ≥ x

m1 p

xs

ys

x

y

I Find p by binary search.
I Key fact: if the number of elements in both arrays is n, then the

number of elements in the larger of the two recursive merges is no
greater than 3

4n.
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