
Fork-join model and work stealing
CRSPP reading group

Arthur Charguéraud and Mike Rainey

MPI-SWS

June 19, 2011

Arthur Charguéraud and Mike Rainey 1

Outline

I Background: design and analysis of parallel algorithms
I Scheduling parallel algorithms on multiprocessor machines
I Scheduling by work stealing
I Implementation of work stealing

Arthur Charguéraud and Mike Rainey 2

Implicit parallelism

Divide and conquer style is typical for parallel algorithms.

type tree =
| Leaf of int
| Node of tree * tree

let rec sum t =
match t with
| Leaf n -> n
| Node (t1,t2) ->
(* allow recursive calls to go in parallel *)
let (n1, n2) = (| sum t1, sum t2 |) in
n1 + n2

Arthur Charguéraud and Mike Rainey 3

Visualizing the task graph

parallel tuple expression series-parallel DAG

sum (Node (Leaf 5,
 Node (Leaf 23,

 Leaf 8))) 23 8

+

5

+

Arthur Charguéraud and Mike Rainey 4

Series-Parallel DAGs

SP DAGs are built inductively from:

G

G1

G2

G1 G2

task serial composition parallel compositiongraph

data / control
dependency

fork task

join task

Arthur Charguéraud and Mike Rainey 5

Work and span in SP DAGs
We use SP DAGs as basis for a cost model to estimate benefit of

parallelism.

span
= length of

 critical path

work
= number of

nodes

(convention: from hereon,
edges will always point

down implicitly)

Arthur Charguéraud and Mike Rainey 6

The sum function applied to a balanced tree with 16
leaf nodes.

Work Span

8

4
2
1

1

1

1

1

Total: 22 Total: 6

++
+ + + +

+1
2
4 1

1
1

Arthur Charguéraud and Mike Rainey 7

Defining costs

Let TP denote the time to execute a given SP DAG with P processors.

I T1 corresponds to the work.
I T∞ corresponds to the span.
I Speedup with P processors is T1

TP
.

I Speedup P means “perfect linear”.
I Speedup 1 means adding more processors does not help.

Arthur Charguéraud and Mike Rainey 8

The average parallelism

The average parallelism Pavg is T1
T∞

, the ratio of work and span.

I Average parallelism represents the maximum speedup regardless
of # processors.

I Proof:
I Speedup = T1

TP
I TP ≥ T∞, for any P
I Therefore, speedup ≤ T1

T∞

I We can use Pavg to
I estimate how parallel a given algorithm is
I compare parallelism of different algorithms

I Examples:
I sum (balanced tree): large Pavg
I sum (unbalanced tree): small Pavg
I list-based mergesort: small Pavg
I tree-based quicksort: large Pavg

Arthur Charguéraud and Mike Rainey 9

Complexity of sum

I Suppose the input tree contains n leaves and has height h.
I T1 = O(n)
I T∞ = O(h)

I Example 1: the input tree is balanced (h = log2 n)
I Large average parallelism Pavg = O(n

log n)

I For instance, if n = 220, then Pavg = 220

20 ≈ 100,000.
I That is more than enough parallelism to utilize many processors.

I Example 2: the input tree is not balanced (h = n, e.g., a list)
I Small average parallelism Pavg = 1.
I No benefit from having more than one processor.

Arthur Charguéraud and Mike Rainey 10

Merging two sorted lists

let rec merge (xs : int list, ys : int list) =
match (xs, ys) with
| ([], ys) -> ys
| (xs, []) -> xs
| (x::xs, y::ys) ->
if x < y then
x :: merge (xs, y::ys)

else
y :: merge (x::xs, ys)

Arthur Charguéraud and Mike Rainey 11

List-based mergesort

let rec mergesort (xs : int list) =
match xs with
| [] -> []
| [x] -> [x]
| xs ->

let med = length xs / 2 in
let (left, right) =

(take med xs, drop med xs) in
merge (| mergesort left, mergesort right |)

Arthur Charguéraud and Mike Rainey 12

Complexity of mergesort

n/2

n/8
n/4

T∞ =

2cn

n/2

n/4

n

n

input list length = n

T1 = cn log n

c is some
constant

Arthur Charguéraud and Mike Rainey 13

Parallelism of mergesort

I Then the average parallelism Pavg = cn log n
2cn = log n

2 .

I If n = 220, then Pavg = log 220

2 = 10.
I That is terrible: greatest speedup we can ever hope to achieve is

10x.
I Can we do better?

I There exists a parallel functional mergesort with
I T1 = O(n log n)
I T∞ = O(log3 n)
I Pavg = O(n

log2 n)

I Basic ideas:
I balanced trees (or arrays) instead of linked lists
I parallelize the merging phase

I See Blelloch & Greiner 1995 for more details.

Arthur Charguéraud and Mike Rainey 14

Tree-based quicksort
type tree = Empty | Leaf of int | Node of tree * tree

let append (xs, ys) =
match (xs, ys) with
| (Empty, ys) -> ys
| (xs, Empty) -> xs
| _ -> Node (xs, ys)

let rec filter (f : int -> bool) (xs : tree) =
match xs with
| Empty -> Empty
| Leaf x -> if f x then Leaf x else Empty
| Node (xs, ys) ->
let (xs’, ys’) =
(| filter f xs, filter f ys |) in

append (xs’, ys’)

Arthur Charguéraud and Mike Rainey 15

Tree-based quicksort

let rec quicksort (xs : tree) =
match xs with
| Empty -> Empty
| Leaf x -> Leaf x
| _ ->

let pivot = first xs in
let less = filter (fun x -> x < pivot) xs in
let greater = filter (fun x -> x > pivot) xs in
let equal = filter (fun x -> x = pivot) xs in
let (left, right) =
(| quicksort less, quicksort greater |) in

append (left, append (equal, right))

Arthur Charguéraud and Mike Rainey 16

Complexity of quicksort (assuming the input tree is
balanced)

T∞
= O(log2n)

O(log (n/2))

T1 = O(n log n)

Pavg = O((n log n) / log n) = O(n / log n) (good!)

O(logn)

O(log (n/4))

O(log (n/8))

Arthur Charguéraud and Mike Rainey 17

Summary

T1 T∞ Pavg
sum (balanced trees) O(n) O(log n) O(n

log n)

sum (unbalanced trees) O(n) O(n) O(1)
mergesort O(n log n) O(n) O(log n)
quicksort O(n log n) O(log2 n) O(n

log n)

I Lists are bad.
I Trees are good.
I List-to-tree adaptation gives good results for a number of

algorithms.
I Sometimes algorithms need to be redesigned.

Arthur Charguéraud and Mike Rainey 18

Scheduling SP DAGs on multiprocessor machines

I Scheduling is mapping suparts of SP DAGs to finitely-many
processors.

I Goal: to minimize execution time.
I Scheduler discovers the structure of the SP DAG as it goes.

I i.e., online scheduling
I The scheduling policy

I determines order in which tasks are executed
I mappings from tasks to processors

Arthur Charguéraud and Mike Rainey 19

Greedy scheduling policies
A greedy scheduler is a scheduler in which no processor is idle if there

are ready tasks.

executed

ready

waiting

executing

number of processors P = 2not yet created

Arthur Charguéraud and Mike Rainey 20

What’s good about the greedy scheduler

Recall: TP denotes execution time on P processors

I Observation 1: TP ≥ T∞
I can go no faster than length of critical path

I Observation 2: TP ≥ T1
P

I can go no faster than having all processors always busy
I Brent’s Theorem: TP ≤ T1

P + T∞

I Theorem says that we can get close to optimal execution time
(within factor of two).

Arthur Charguéraud and Mike Rainey 21

When to expect linear speedups

Recall:
I Pavg = T1

T∞
.

I Brent’s Theorem: TP ≤ T1
P + T∞

Therefore:
I Suppose that Pavg � P ⇔ T1

T∞
� P ⇔ T1

P � T∞.
I This case is often called “parallel slackness”.

I With parallel slackness, the first term in Brent’s Theorem
dominates.

I So, we have TP ≈ T1
P .

I i.e., linear speedup
I Observation: This prediction is valid for our model, where

scheduling costs are not reflected.

Arthur Charguéraud and Mike Rainey 22

Designing a greedy scheduling policy

First idea: maintain ready tasks in a shared queue.

I When a processor needs a new task, it grabs one from the queue.
I When a processor forks a task, it puts the task on the shared

queue.

Arthur Charguéraud and Mike Rainey 23

Problem with the shared queue

nil

P1 P2 P3 P4processors

lock

I Benefits of parallelism are obliterated because processors spend
a lot of time waiting to access the queue.

Arthur Charguéraud and Mike Rainey 24

Work stealing

I Each processor maintains the ready tasks that it has created in
what is called a deque.

I Processors usually push and pop on their own deques.
I If a given processor’s deque is empty, then the processor pops

from the non-empty deque of another processor (if any).
I called “stealing”

I There is an extensive literature on work stealing.
I Burton and Sleep 1981; Halstead 1984; Mohr et al. 1990; Carlisle,

et al. 1995; Leiserson, et al. 1995,1999; Arora et al. 1998; Acar et
al. 2000; Danaher et al. 2005,2006; Agrawal and Leiserson 2008;
Spoonhower 2010

Arthur Charguéraud and Mike Rainey 25

Work stealing deques

P1 P2 P3processors

push pop push pop

deques

Arthur Charguéraud and Mike Rainey 26

Work stealing steal

P1 P2 P3processors

push pop push pop

deques pop

Arthur Charguéraud and Mike Rainey 27

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1

Arthur Charguéraud and Mike Rainey 28

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1

Arthur Charguéraud and Mike Rainey 29

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1

Arthur Charguéraud and Mike Rainey 30

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1

Arthur Charguéraud and Mike Rainey 31

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 32

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 33

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 34

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 35

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 36

Example of work stealing

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 37

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

Arthur Charguéraud and Mike Rainey 38

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P1 P2

P1

P1 gets to the
 join task first

Arthur Charguéraud and Mike Rainey 39

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P2

P1

P1 goes idle
(starts trying to steal)

Arthur Charguéraud and Mike Rainey 40

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P2

P1

P2 executes
the continuation

Arthur Charguéraud and Mike Rainey 41

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P2

P1

P2 executes
the continuation

Arthur Charguéraud and Mike Rainey 42

Example of work stealing: handling join tasks

executed

ready

waiting

executing

number of processors P = 2

P2

P1

P2 executes
the continuation

Arthur Charguéraud and Mike Rainey 43

The benefit of work stealing

Recall:
I Brent’s theorem TP ≤ T1

P + T∞

I When T1
T∞
� P, we can expect linear speedup: TP ≈ T1

P .
But!

I We have to assume that ready tasks can be found efficiently.
I Work stealing achieves this because most of the time the ready

task is in the local deque.
I Rarely does a processor have to steal.

I Suppose we have the thief processor always pick its victim
uniformly at random.

I Blumofe and Leiserson (1995) show that, with high probability,
expected total # of steals ≤ O(T∞P).

I So, we want T∞P � T1, which is equivalent to T1
T∞
� P.

Arthur Charguéraud and Mike Rainey 44

The work-first principle for designing efficient
implementations of work stealing

scheduling costs = stealing costs + non stealing costs
(non local) (local)

(rare) (common)

Work-first principle (Frigo et. al. 1998): minimize the second term in
the sum above because it represents the common case.

Arthur Charguéraud and Mike Rainey 45

Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

(t2 was stolen)

Arthur Charguéraud and Mike Rainey 46

Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 ? 1 k

expensive atomic
add to prevent race

Arthur Charguéraud and Mike Rainey 47

Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 x2 2 k

expensive atomic
add to prevent race

Arthur Charguéraud and Mike Rainey 48

Slow clone (represents rare case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

x1 x2 2 k

start evaluating
 k (x1, x2)

Arthur Charguéraud and Mike Rainey 49

Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2

Arthur Charguéraud and Mike Rainey 50

Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2popped task t2

Arthur Charguéraud and Mike Rainey 51

Fast clone (represents common case)

k

t1 t2

let (x1, x2) =(|t1, t2|) in

... (* continuation k *)

? ? 0 k

t2

(fun x2 -> k (x1, x2)) t2

start evaluating t2:

Arthur Charguéraud and Mike Rainey 52

Making deques more efficient than using a lock

I There is a potential race in stealing because both thief and victim
can try to pop from deque simultaneously.

I Using locks would be too expensive.
I There are some better approaches:

I Private deques
I Shared deques

Arthur Charguéraud and Mike Rainey 53

Private deques
I Each processor has sole read / write access to its own deque.

I Stealing is handled by message passing.
I Designs investigated in Multilisp, ADM, and Manticore.

I Local deque access is cheap.
I Protecting deques from races is trivial: just delay handling a

message while deque is in inconsistent state.
I Message-passing can be implemented on top of software polling

or OS interrupts.
I In any case, busy processors always pay a cost for handling

signals.
I We need to avoid the case where busy processors are sent too

many messages.
I We can avoid sending unecessary messages by having each

processor maintain a flag indicating if its deque is empty.

Arthur Charguéraud and Mike Rainey 54

Shared deques
I Each processor has exclusive read / write access to the top of its

own deque; all processors have read / write access to the bottom
of the deque.

I Synchronization is handled by Dijkstra-style mutual exclusion
protocol (Frigo et. al. 1998).

I Designs investigated in Multilisp, Cilk, and Hood.
I Non-blocking deques are crucial in the setting where processors

are shared between work stealing and other processes.
I Several papers investigate non-blocking deques.

I Blumofe et. al. 1998
I Nir & Shavit 2005
I Tang et. al. 2010

I Presentations of concurrent deque algorithms assume sequential
consistency.

I Modern multicore machines usually have relaxed memory
consistency models.

I For such machines, expensive memory fences are required to
prevent race condition.

Arthur Charguéraud and Mike Rainey 55

Comparing shared and private deques

I In private-deque approach, we can easily avoid costly memory
fences, whereas we cannot in existing shared-deque approaches.

I Stealing is more expensive with with private deques because of
message-passing overhead.

I Stealing costs are arguably of minor importance, because we
expect the common case is that # steals is negligable.

I Handling deque overflow is trivial with private deques; special
concurrency protocol is necessary for shared deques (Nir & Shavit
2005).

Arthur Charguéraud and Mike Rainey 56

Summary

I We introduced SP DAGs to model performance.
I We compared the parallelism of two tree-based and one list-based

algorithms.
I We found that the tree-based algorithms naturally exhibit more

parallelism than list-based ones.
I We studied the class of greedy schedulers and found that:

I Execution time TP ≤ T1
P + T∞

I When Pavg � P, we achieve linear speedup.
I In practice, work stealing gets close to the bound above because

it minimizes costs of managing ready tasks in common case.

Arthur Charguéraud and Mike Rainey 57

Parallel merge
l1 l/2

≤ x ≥ x

≤ x ≥ x

m1 p

xs

ys

x

y

I Find p by binary search.
I Key fact: if the number of elements in both arrays is n, then the

number of elements in the larger of the two recursive merges is no
greater than 3

4n.

Arthur Charguéraud and Mike Rainey 58

