Fork-join model and work stealing CRSPP reading group

Arthur Charguéraud and Mike Rainey

MPI-SWS

June 19, 2011

1

Outline

- Background: design and analysis of parallel algorithms
- Scheduling parallel algorithms on multiprocessor machines
- Scheduling by work stealing
- Implementation of work stealing

Implicit parallelism

Divide and conquer style is typical for parallel algorithms.

```
type tree =
  | Leaf of int
  | Node of tree * tree
let rec sum t =
  match t with
  | Leaf n -> n
  | Node (t1, t2) \rightarrow
    (* allow recursive calls to go in parallel *)
    let (n1, n2) = (| sum t1, sum t2 |) in
    n1 + n2
```

Visualizing the task graph

Series-Parallel DAGs

SP DAGs are built inductively from:

Work and span in SP DAGs

We use SP DAGs as basis for a cost model to estimate benefit of parallelism.

The sum function applied to a balanced tree with 16 leaf nodes.

Let T_P denote the time to execute a given SP DAG with P processors.

- T_1 corresponds to the work.
- T_{∞} corresponds to the span.
- Speedup with *P* processors is $\frac{T_1}{T_P}$.
 - Speedup P means "perfect linear".
 - Speedup 1 means adding more processors does not help.

The average parallelism

The average parallelism P_{avg} is $\frac{T_1}{T_{\infty}}$, the ratio of work and span.

- Average parallelism represents the maximum speedup regardless of # processors.
 - Proof:
 - Speedup = $\frac{T_1}{T_P}$
 - $T_P \ge T_{\infty}$, for any *P*
 - Therefore, speedup $\leq \frac{T_1}{T_{\infty}}$
- We can use P_{avg} to
 - estimate how parallel a given algorithm is
 - compare parallelism of different algorithms
- Examples:
 - sum (balanced tree): large Pavg
 - sum (unbalanced tree): small P_{avg}
 - list-based mergesort: small Pavg
 - tree-based quicksort: large P_{avg}

Complexity of sum

- Suppose the input tree contains *n* leaves and has height *h*.
 - $T_1 = O(n)$
 - $T_{\infty} = O(h)$
- Example 1: the input tree is balanced (h = log₂ n)
 - Large average parallelism $P_{avg} = O(\frac{n}{\log n})$
 - For instance, if $n = 2^{20}$, then $P_{avg} = \frac{2^{20}}{20} \approx 100,000$.
 - That is more than enough parallelism to utilize many processors.
- Example 2: the input tree is not balanced (h = n, e.g., a list)
 - Small average parallelism P_{avg} = 1.
 - No benefit from having more than one processor.

Merging two sorted lists

List-based mergesort

```
let rec mergesort (xs : int list) =
  match xs with
  | [] -> []
  | [x] -> [x]
  | xs ->
   let med = length xs / 2 in
   let (left, right) =
        (take med xs, drop med xs) in
   merge (| mergesort left, mergesort right |)
```

Complexity of mergesort

Parallelism of mergesort

- Then the average parallelism $P_{avg} = \frac{cn\log n}{2cn} = \frac{\log n}{2}$.
- If $n = 2^{20}$, then $P_{ava} = \frac{\log 2^{20}}{2} = 10$.
- That is terrible: greatest speedup we can ever hope to achieve is 10x.
- Can we do better?
 - There exists a parallel functional mergesort with
 - *T*₁ = *O*(*n* log *n*)
 *T*_∞ = *O*(log³ *n*)

 - $P_{avg} = O(\frac{n}{\log^2 n})$
 - Basic ideas:
 - balanced trees (or arrays) instead of linked lists
 - parallelize the merging phase
 - See Blelloch & Greiner 1995 for more details.

Tree-based quicksort

type tree = Empty | Leaf of int | Node of tree * tree

```
let append (xs, ys) =
  match (xs, ys) with
   | (Empty, ys) -> vs
   | (xs, Empty) -> xs
   | _ -> Node (xs, ys)
let rec filter (f : int -> bool) (xs : tree) =
  match xs with
   | Empty -> Empty
   | Leaf x \rightarrow if f x then Leaf x else Empty
   | Node (xs, ys) ->
     let (xs', ys') =
       (| filter f xs, filter f ys |) in
     append (xs', ys')
```

Tree-based quicksort

```
let rec quicksort (xs : tree) =
  match xs with
   | Empty -> Empty
   | Leaf x \rightarrow Leaf x
   | _ ->
     let pivot = first xs in
     let less = filter (fun x \rightarrow x < pivot) xs in
     let greater = filter (fun x \rightarrow x > pivot) xs in
     let equal = filter (fun x \rightarrow x = pivot) xs in
     let (left, right) =
        (| quicksort less, quicksort greater |) in
     append (left, append (equal, right))
```

Complexity of quicksort (assuming the input tree is balanced)

 $P_{avg} = O((n \log n) / \log n) = O(n / \log n) \quad (good!)$

Summary

	T ₁	T_{∞}	P _{avg}
sum (balanced trees)	<i>O</i> (<i>n</i>)	<i>O</i> (log <i>n</i>)	$O(\frac{n}{\log n})$
sum (unbalanced trees)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (1)
mergesort	$O(n \log n)$	<i>O</i> (<i>n</i>)	<i>O</i> (log <i>n</i>)
quicksort	$O(n \log n)$	$O(\log^2 n)$	$O(\frac{n}{\log n})$

- Lists are bad.
- Trees are good.
- List-to-tree adaptation gives good results for a number of algorithms.
- Sometimes algorithms need to be redesigned.

Scheduling SP DAGs on multiprocessor machines

- Scheduling is mapping suparts of SP DAGs to finitely-many processors.
- Goal: to minimize execution time.
- Scheduler discovers the structure of the SP DAG as it goes.
 - *i.e.*, online scheduling
- The scheduling policy
 - determines order in which tasks are executed
 - mappings from tasks to processors

Greedy scheduling policies

A greedy scheduler is a scheduler in which no processor is idle if there are ready tasks.

What's good about the greedy scheduler

Recall: T_P denotes execution time on P processors

- Observation 1: $T_P \ge T_{\infty}$
 - can go no faster than length of critical path
- Observation 2: $T_P \ge \frac{T_1}{P}$
 - can go no faster than having all processors always busy
- Brent's Theorem: $T_P \leq \frac{T_1}{P} + T_{\infty}$
- Theorem says that we can get close to optimal execution time (within factor of two).

When to expect linear speedups

Recall:

•
$$P_{avg} = \frac{T_1}{T_{\infty}}$$
.

• Brent's Theorem: $T_P \leq \frac{T_1}{P} + T_{\infty}$

Therefore:

- ▶ Suppose that $P_{avg} \gg P \iff \frac{T_1}{T_{\infty}} \gg P \iff \frac{T_1}{P} \gg T_{\infty}$.
 - This case is often called "parallel slackness".
- With parallel slackness, the first term in Brent's Theorem dominates.
- So, we have $T_P \approx \frac{T_1}{P}$.
 - i.e., linear speedup
- Observation: This prediction is valid for our model, where scheduling costs are not reflected.

Designing a greedy scheduling policy

First idea: maintain ready tasks in a shared queue.

- ▶ When a processor needs a new task, it grabs one from the queue.
- When a processor forks a task, it puts the task on the shared queue.

Problem with the shared queue

 Benefits of parallelism are obliterated because processors spend a lot of time waiting to access the queue.

Work stealing

- Each processor maintains the ready tasks that it has created in what is called a deque.
- Processors usually push and pop on their own deques.
- If a given processor's deque is empty, then the processor pops from the non-empty deque of another processor (if any).
 - called "stealing"
- There is an extensive literature on work stealing.
 - Burton and Sleep 1981; Halstead 1984; Mohr *et al.* 1990; Carlisle, *et al.* 1995; Leiserson, *et al.* 1995,1999; Arora *et al.* 1998; Acar *et al.* 2000; Danaher *et al.* 2005,2006; Agrawal and Leiserson 2008; Spoonhower 2010

Work stealing deques

Work stealing steal

The benefit of work stealing

Recall:

• Brent's theorem $T_P \leq \frac{T_1}{P} + T_{\infty}$

• When $\frac{T_1}{T_{\infty}} \gg P$, we can expect linear speedup: $T_P \approx \frac{T_1}{P}$.

But!

- We have to assume that ready tasks can be found efficiently.
- Work stealing achieves this because most of the time the ready task is in the local deque.
- Rarely does a processor have to steal.
 - Suppose we have the thief processor always pick its victim uniformly at random.
 - ▶ Blumofe and Leiserson (1995) show that, with high probability, expected total # of steals $\leq O(T_{\infty}P)$.
 - So, we want $T_{\infty}P \ll T_1$, which is equivalent to $\frac{T_1}{T_{\infty}} \gg P$.

The work-first principle for designing efficient implementations of work stealing

scheduling costs = stealing costs + non stealing costs (non local) (local) (rare) (common)

Work-first principle (Frigo *et. al.* 1998): minimize the second term in the sum above because it represents the common case.

Fast clone (represents common case)

Fast clone (represents common case)

Fast clone (represents common case)

Making deques more efficient than using a lock

- There is a potential race in stealing because both thief and victim can try to pop from deque simultaneously.
- Using locks would be too expensive.
- There are some better approaches:
 - Private deques
 - Shared deques

Private deques

- Each processor has sole read / write access to its own deque.
 - Stealing is handled by message passing.
 - Designs investigated in Multilisp, ADM, and Manticore.
- Local deque access is cheap.
- Protecting deques from races is trivial: just delay handling a message while deque is in inconsistent state.
- Message-passing can be implemented on top of software polling or OS interrupts.
- In any case, busy processors always pay a cost for handling signals.
- We need to avoid the case where busy processors are sent too many messages.
- We can avoid sending unecessary messages by having each processor maintain a flag indicating if its deque is empty.

Shared deques

- Each processor has exclusive read / write access to the top of its own deque; all processors have read / write access to the bottom of the deque.
 - Synchronization is handled by Dijkstra-style mutual exclusion protocol (Frigo *et. al.* 1998).
 - Designs investigated in Multilisp, Cilk, and Hood.
- Non-blocking deques are crucial in the setting where processors are shared between work stealing and other processes.
 - Several papers investigate non-blocking deques.
 - Blumofe et. al. 1998
 - Nir & Shavit 2005
 - Tang et. al. 2010
- Presentations of concurrent deque algorithms assume sequential consistency.
 - Modern multicore machines usually have relaxed memory consistency models.
 - For such machines, expensive memory fences are required to prevent race condition.

Comparing shared and private deques

- In private-deque approach, we can easily avoid costly memory fences, whereas we cannot in existing shared-deque approaches.
- Stealing is more expensive with with private deques because of message-passing overhead.
 - Stealing costs are arguably of minor importance, because we expect the common case is that # steals is negligable.
- Handling deque overflow is trivial with private deques; special concurrency protocol is necessary for shared deques (Nir & Shavit 2005).

Summary

- We introduced SP DAGs to model performance.
- We compared the parallelism of two tree-based and one list-based algorithms.
- We found that the tree-based algorithms naturally exhibit more parallelism than list-based ones.
- We studied the class of greedy schedulers and found that:
 - Execution time $T_P \leq \frac{T_1}{P} + T_{\infty}$
 - When $P_{avg} \gg P$, we achieve linear speedup.
- In practice, work stealing gets close to the bound above because it minimizes costs of managing ready tasks in common case.

Parallel merge

- Find *p* by binary search.
- ► *Key fact*: if the number of elements in both arrays is *n*, then the number of elements in the larger of the two recursive merges is no greater than $\frac{3}{4}n$.