#### Fork-join model and work stealing CRSPP reading group

#### Arthur Charguéraud and Mike Rainey

MPI-SWS

June 19, 2011

1

#### Outline

- Background: design and analysis of parallel algorithms
- Scheduling parallel algorithms on multiprocessor machines
- Scheduling by work stealing
- Implementation of work stealing

#### Implicit parallelism

Divide and conquer style is typical for parallel algorithms.

```
type tree =
  | Leaf of int
  | Node of tree * tree
let rec sum t =
  match t with
  | Leaf n -> n
  | Node (t1, t2) \rightarrow
    (* allow recursive calls to go in parallel *)
    let (n1, n2) = (| sum t1, sum t2 |) in
    n1 + n2
```

Visualizing the task graph



#### Series-Parallel DAGs

SP DAGs are built inductively from:



# Work and span in SP DAGs

We use SP DAGs as basis for a cost model to estimate benefit of parallelism.



# The sum function applied to a balanced tree with 16 leaf nodes.





Let  $T_P$  denote the time to execute a given SP DAG with P processors.

- $T_1$  corresponds to the work.
- $T_{\infty}$  corresponds to the span.
- Speedup with *P* processors is  $\frac{T_1}{T_P}$ .
  - Speedup P means "perfect linear".
  - Speedup 1 means adding more processors does not help.

#### The average parallelism

The average parallelism  $P_{avg}$  is  $\frac{T_1}{T_{\infty}}$ , the ratio of work and span.

- Average parallelism represents the maximum speedup regardless of # processors.
  - Proof:
    - Speedup =  $\frac{T_1}{T_P}$
    - $T_P \ge T_{\infty}$ , for any *P*
    - Therefore, speedup  $\leq \frac{T_1}{T_{\infty}}$
- We can use P<sub>avg</sub> to
  - estimate how parallel a given algorithm is
  - compare parallelism of different algorithms
- Examples:
  - sum (balanced tree): large Pavg
  - sum (unbalanced tree): small P<sub>avg</sub>
  - list-based mergesort: small Pavg
  - tree-based quicksort: large P<sub>avg</sub>

# Complexity of sum

- Suppose the input tree contains *n* leaves and has height *h*.
  - $T_1 = O(n)$
  - $T_{\infty} = O(h)$
- Example 1: the input tree is balanced (h = log<sub>2</sub> n)
  - Large average parallelism  $P_{avg} = O(\frac{n}{\log n})$
  - For instance, if  $n = 2^{20}$ , then  $P_{avg} = \frac{2^{20}}{20} \approx 100,000$ .
  - That is more than enough parallelism to utilize many processors.
- Example 2: the input tree is not balanced (h = n, e.g., a list)
  - Small average parallelism P<sub>avg</sub> = 1.
  - No benefit from having more than one processor.

#### Merging two sorted lists

#### List-based mergesort

```
let rec mergesort (xs : int list) =
  match xs with
  | [] -> []
  | [x] -> [x]
  | xs ->
   let med = length xs / 2 in
   let (left, right) =
        (take med xs, drop med xs) in
   merge (| mergesort left, mergesort right |)
```

Complexity of mergesort



# Parallelism of mergesort

- Then the average parallelism  $P_{avg} = \frac{cn\log n}{2cn} = \frac{\log n}{2}$ .
- If  $n = 2^{20}$ , then  $P_{ava} = \frac{\log 2^{20}}{2} = 10$ .
- That is terrible: greatest speedup we can ever hope to achieve is 10x.
- Can we do better?
  - There exists a parallel functional mergesort with
    - *T*<sub>1</sub> = *O*(*n* log *n*)
       *T*<sub>∞</sub> = *O*(log<sup>3</sup> *n*)

    - $P_{avg} = O(\frac{n}{\log^2 n})$
  - Basic ideas:
    - balanced trees (or arrays) instead of linked lists
    - parallelize the merging phase
  - See Blelloch & Greiner 1995 for more details.

#### Tree-based quicksort

type tree = Empty | Leaf of int | Node of tree \* tree

```
let append (xs, ys) =
  match (xs, ys) with
   | (Empty, ys) -> vs
   | (xs, Empty) -> xs
   | _ -> Node (xs, ys)
let rec filter (f : int -> bool) (xs : tree) =
  match xs with
   | Empty -> Empty
   | Leaf x \rightarrow if f x then Leaf x else Empty
   | Node (xs, ys) ->
     let (xs', ys') =
       (| filter f xs, filter f ys |) in
     append (xs', ys')
```

#### Tree-based quicksort

```
let rec quicksort (xs : tree) =
  match xs with
   | Empty -> Empty
   | Leaf x \rightarrow Leaf x
   | _ ->
     let pivot = first xs in
     let less = filter (fun x \rightarrow x < pivot) xs in
     let greater = filter (fun x \rightarrow x > pivot) xs in
     let equal = filter (fun x \rightarrow x = pivot) xs in
     let (left, right) =
        (| quicksort less, quicksort greater |) in
     append (left, append (equal, right))
```

# Complexity of quicksort (assuming the input tree is balanced)



 $P_{avg} = O((n \log n) / \log n) = O(n / \log n) \quad (good!)$ 

# Summary

|                        | T <sub>1</sub>        | $T_{\infty}$             | P <sub>avg</sub>         |
|------------------------|-----------------------|--------------------------|--------------------------|
| sum (balanced trees)   | <i>O</i> ( <i>n</i> ) | <i>O</i> (log <i>n</i> ) | $O(\frac{n}{\log n})$    |
| sum (unbalanced trees) | <i>O</i> ( <i>n</i> ) | <i>O</i> ( <i>n</i> )    | <i>O</i> (1)             |
| mergesort              | $O(n \log n)$         | <i>O</i> ( <i>n</i> )    | <i>O</i> (log <i>n</i> ) |
| quicksort              | $O(n \log n)$         | $O(\log^2 n)$            | $O(\frac{n}{\log n})$    |

- Lists are bad.
- Trees are good.
- List-to-tree adaptation gives good results for a number of algorithms.
- Sometimes algorithms need to be redesigned.

# Scheduling SP DAGs on multiprocessor machines

- Scheduling is mapping suparts of SP DAGs to finitely-many processors.
- Goal: to minimize execution time.
- Scheduler discovers the structure of the SP DAG as it goes.
  - *i.e.*, online scheduling
- The scheduling policy
  - determines order in which tasks are executed
  - mappings from tasks to processors

# Greedy scheduling policies

A greedy scheduler is a scheduler in which no processor is idle if there are ready tasks.



# What's good about the greedy scheduler

Recall:  $T_P$  denotes execution time on P processors

- Observation 1:  $T_P \ge T_{\infty}$ 
  - can go no faster than length of critical path
- Observation 2:  $T_P \ge \frac{T_1}{P}$ 
  - can go no faster than having all processors always busy
- Brent's Theorem:  $T_P \leq \frac{T_1}{P} + T_{\infty}$
- Theorem says that we can get close to optimal execution time (within factor of two).

# When to expect linear speedups

Recall:

• 
$$P_{avg} = \frac{T_1}{T_{\infty}}$$
.

• Brent's Theorem:  $T_P \leq \frac{T_1}{P} + T_{\infty}$ 

Therefore:

- ▶ Suppose that  $P_{avg} \gg P \iff \frac{T_1}{T_{\infty}} \gg P \iff \frac{T_1}{P} \gg T_{\infty}$ .
  - This case is often called "parallel slackness".
- With parallel slackness, the first term in Brent's Theorem dominates.
- So, we have  $T_P \approx \frac{T_1}{P}$ .
  - i.e., linear speedup
- Observation: This prediction is valid for our model, where scheduling costs are not reflected.

# Designing a greedy scheduling policy

First idea: maintain ready tasks in a shared queue.

- ▶ When a processor needs a new task, it grabs one from the queue.
- When a processor forks a task, it puts the task on the shared queue.

# Problem with the shared queue



 Benefits of parallelism are obliterated because processors spend a lot of time waiting to access the queue.

# Work stealing

- Each processor maintains the ready tasks that it has created in what is called a deque.
- Processors usually push and pop on their own deques.
- If a given processor's deque is empty, then the processor pops from the non-empty deque of another processor (if any).
  - called "stealing"
- There is an extensive literature on work stealing.
  - Burton and Sleep 1981; Halstead 1984; Mohr *et al.* 1990; Carlisle, *et al.* 1995; Leiserson, *et al.* 1995,1999; Arora *et al.* 1998; Acar *et al.* 2000; Danaher *et al.* 2005,2006; Agrawal and Leiserson 2008; Spoonhower 2010

# Work stealing deques



# Work stealing steal



# The benefit of work stealing

Recall:

• Brent's theorem  $T_P \leq \frac{T_1}{P} + T_{\infty}$ 

• When  $\frac{T_1}{T_{\infty}} \gg P$ , we can expect linear speedup:  $T_P \approx \frac{T_1}{P}$ .

But!

- We have to assume that ready tasks can be found efficiently.
- Work stealing achieves this because most of the time the ready task is in the local deque.
- Rarely does a processor have to steal.
  - Suppose we have the thief processor always pick its victim uniformly at random.
  - ▶ Blumofe and Leiserson (1995) show that, with high probability, expected total # of steals  $\leq O(T_{\infty}P)$ .
  - So, we want  $T_{\infty}P \ll T_1$ , which is equivalent to  $\frac{T_1}{T_{\infty}} \gg P$ .

# The work-first principle for designing efficient implementations of work stealing

scheduling costs = stealing costs + non stealing costs (non local) (local) (rare) (common)

Work-first principle (Frigo *et. al.* 1998): minimize the second term in the sum above because it represents the common case.









# Fast clone (represents common case)





# Fast clone (represents common case)



# Fast clone (represents common case)



# Making deques more efficient than using a lock

- There is a potential race in stealing because both thief and victim can try to pop from deque simultaneously.
- Using locks would be too expensive.
- There are some better approaches:
  - Private deques
  - Shared deques

# Private deques

- Each processor has sole read / write access to its own deque.
  - Stealing is handled by message passing.
  - Designs investigated in Multilisp, ADM, and Manticore.
- Local deque access is cheap.
- Protecting deques from races is trivial: just delay handling a message while deque is in inconsistent state.
- Message-passing can be implemented on top of software polling or OS interrupts.
- In any case, busy processors always pay a cost for handling signals.
- We need to avoid the case where busy processors are sent too many messages.
- We can avoid sending unecessary messages by having each processor maintain a flag indicating if its deque is empty.

# Shared deques

- Each processor has exclusive read / write access to the top of its own deque; all processors have read / write access to the bottom of the deque.
  - Synchronization is handled by Dijkstra-style mutual exclusion protocol (Frigo *et. al.* 1998).
  - Designs investigated in Multilisp, Cilk, and Hood.
- Non-blocking deques are crucial in the setting where processors are shared between work stealing and other processes.
  - Several papers investigate non-blocking deques.
    - Blumofe et. al. 1998
    - Nir & Shavit 2005
    - Tang et. al. 2010
- Presentations of concurrent deque algorithms assume sequential consistency.
  - Modern multicore machines usually have relaxed memory consistency models.
  - For such machines, expensive memory fences are required to prevent race condition.

# Comparing shared and private deques

- In private-deque approach, we can easily avoid costly memory fences, whereas we cannot in existing shared-deque approaches.
- Stealing is more expensive with with private deques because of message-passing overhead.
  - Stealing costs are arguably of minor importance, because we expect the common case is that # steals is negligable.
- Handling deque overflow is trivial with private deques; special concurrency protocol is necessary for shared deques (Nir & Shavit 2005).

#### Summary

- We introduced SP DAGs to model performance.
- We compared the parallelism of two tree-based and one list-based algorithms.
- We found that the tree-based algorithms naturally exhibit more parallelism than list-based ones.
- We studied the class of greedy schedulers and found that:
  - Execution time  $T_P \leq \frac{T_1}{P} + T_{\infty}$
  - When  $P_{avg} \gg P$ , we achieve linear speedup.
- In practice, work stealing gets close to the bound above because it minimizes costs of managing ready tasks in common case.

# Parallel merge



- Find *p* by binary search.
- ► *Key fact*: if the number of elements in both arrays is *n*, then the number of elements in the larger of the two recursive merges is no greater than  $\frac{3}{4}n$ .