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Scheduling parallel tasks
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Scheduling parallel tasks
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Scheduling parallel tasks
pool of tasks
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Scheduling parallel tasks
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• Goal: dynamic load balancing

• A centralized approach: does not scale up

• Popular approach: work stealing

• Our work: study implementations of work stealing
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Work stealing
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Concurrent deques
• Deques are shared.

• Two sources of race:

• between thieves

• between owner and thief

• Chase-Lev data structure resolves 
these races using atomic 
compare&swap and memory 
fences.
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Concurrent deques

• Well studied: shown to perform well 
both in theory and in practice ...

• Runtime overhead: In a relaxed 
memory model, pop must use a memory 
fence.

• Lack of flexibility: Simple extensions 
(e.g., steal half) involve major challenges. 
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however, researchers identified two main limitations
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Previous studies of 
private deques
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Feeley 1992 Multilisp

Hendler & Shavit 2002 C

Umatani 2003 Java

Hirashi et al. 2009 C

Sanchez et al. 2010 C

Fluet et al. 2011 Parallel ML
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Private deques

• Each core has exclusive access 
to its own deque.

• An idle core obtains a task by 
making a steal request.

• A busy core regularly checks for 
incoming requests.
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steal request

pop & 
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Private deques
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• no need for memory fence 

• flexible deques (any data structure can be used)

• new cost associated with regular polling

• additional delay associated with steals

but

Addresses the main limitations of concurrent deques: 
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Unknowns of private deques
• What is the best way to implement work 

stealing with private deques?

• How does it compare on state of art 
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

9
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stealing with private deques?
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We give a receiver- and a sender-initiated algorithm.

We evaluate on a collection of benchmarks. 

We prove a theorem w.r.t. delay and polling overhead.
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From receiver to 
sender initiated

• Receiver initiated: each idle core targets 
one busy core at random

• Sender initiated: each busy core targets one 
core at random

• Sender initiated idea is adapted from 
distributed computing.

• Sender initiated is simpler to implement.
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Sender initiated
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Performance study

• We implemented in our own C++ library:

• our receiver-initiated algorithm

• our sender-initiated algorithm

• our Chase-Lev implementation

• We compare all of those implementations 
against Cilk Plus.
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Benchmarks

• Classic Cilk benchmarks and Problem Based 
Benchmark Suite (Blelloch et al 2012)

• Problem areas: merge sort, sample sort, 
maximal independent set, maximal 
matching, convex hull, fibonacci, and dense 
matrix multiply.
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Performance results
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Intel Xeon, 30 cores
polling period = 30µsec
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Analytical model
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δ polling interval

F maximal number of forks in a path

P number of cores

T1 serial run time

T∞ minimal run time with infinite cores

TP parallel run time with P cores
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Our main analytical result
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Conclusion

• We presented two new private-deques 
algorithms, evaluated them, and proved 
analytical results.

• In the paper, we demonstrated the 
flexibility of private deques by 
implementing the steal half policy.

18

Friday, July 5, 13


