
Scheduling Parallel Programs by 
Work Stealing with Private Deques

Umut Acar
Carnegie Mellon 

University

Arthur Charguéraud 
INRIA

Mike Rainey
Max Planck Institute

 for Software Systems

PPoPP 25.2.20131

Friday, July 5, 13



Scheduling parallel tasks

2

Friday, July 5, 13



Scheduling parallel tasks

set of cores

2

Friday, July 5, 13



Scheduling parallel tasks
pool of tasks

2

Friday, July 5, 13



Scheduling parallel tasks

2

• Goal: dynamic load balancing

• A centralized approach: does not scale up

• Popular approach: work stealing

• Our work: study implementations of work stealing

Friday, July 5, 13



Work stealing

3

Friday, July 5, 13



Work stealing
deque

3

Friday, July 5, 13



Work stealing

3

Friday, July 5, 13



Work stealing

3

pushpop pushpop pushpop

Friday, July 5, 13



Work stealing

3

Friday, July 5, 13



Work stealing

3

steal

Friday, July 5, 13



Work stealing

3

Friday, July 5, 13



Concurrent deques
• Deques are shared.

• Two sources of race:

• between thieves

• between owner and thief

• Chase-Lev data structure resolves 
these races using atomic 
compare&swap and memory 
fences.

4

top

bot

pushpop

steals

Friday, July 5, 13



Concurrent deques

• Well studied: shown to perform well 
both in theory and in practice ...

• Runtime overhead: In a relaxed 
memory model, pop must use a memory 
fence.

• Lack of flexibility: Simple extensions 
(e.g., steal half) involve major challenges. 

5

however, researchers identified two main limitations

Friday, July 5, 13



Previous studies of 
private deques

6

Feeley 1992 Multilisp

Hendler & Shavit 2002 C

Umatani 2003 Java

Hirashi et al. 2009 C

Sanchez et al. 2010 C

Fluet et al. 2011 Parallel ML

Friday, July 5, 13



Private deques

• Each core has exclusive access 
to its own deque.

• An idle core obtains a task by 
making a steal request.

• A busy core regularly checks for 
incoming requests.

7

steal request

pop & 
send

pushpop

Friday, July 5, 13



Private deques

8

• no need for memory fence 

• flexible deques (any data structure can be used)

• new cost associated with regular polling

• additional delay associated with steals

but

Addresses the main limitations of concurrent deques: 

Friday, July 5, 13



Unknowns of private deques
• What is the best way to implement work 

stealing with private deques?

• How does it compare on state of art 
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

9

Friday, July 5, 13



Unknowns of private deques
• What is the best way to implement work 

stealing with private deques?

• How does it compare on state of art 
benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

9

We give a receiver- and a sender-initiated algorithm.

We evaluate on a collection of benchmarks. 

We prove a theorem w.r.t. delay and polling overhead.

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1-1

22

-1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1-1

22

-1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1-1

CAS

22

-1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1

CAS

2

2 -1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1

2

2 -1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1

2

2 -1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1

2

-1-1

Friday, July 5, 13



Receiver initiated

1 3 4

10

-1 -1

2

-1-1

Friday, July 5, 13



From receiver to 
sender initiated

• Receiver initiated: each idle core targets 
one busy core at random

• Sender initiated: each busy core targets one 
core at random

• Sender initiated idea is adapted from 
distributed computing.

• Sender initiated is simpler to implement.

11

Friday, July 5, 13



Sender initiated

1 3 4

12

... ... ...

2

...

Friday, July 5, 13



0

Sender initiated

1 3 4

12

... ... ...

2

Friday, July 5, 13



0

Sender initiated

1 3 4

12

... ... ...

CAS

2

Friday, July 5, 13



Sender initiated

1 3 4

12

... ... ...

CAS

2

Friday, July 5, 13



Sender initiated

1 3 4

12

... ... ...

2

Friday, July 5, 13



Sender initiated

1 3 4

12

... ... ...

2

Friday, July 5, 13



Sender initiated

1 3 4

12

... ... ...

2

...

Friday, July 5, 13



Performance study

• We implemented in our own C++ library:

• our receiver-initiated algorithm

• our sender-initiated algorithm

• our Chase-Lev implementation

• We compare all of those implementations 
against Cilk Plus.

13

Friday, July 5, 13



Benchmarks

• Classic Cilk benchmarks and Problem Based 
Benchmark Suite (Blelloch et al 2012)

• Problem areas: merge sort, sample sort, 
maximal independent set, maximal 
matching, convex hull, fibonacci, and dense 
matrix multiply.

14

Friday, July 5, 13



Performance results

15

Intel Xeon, 30 cores
polling period = 30µsec

m
at

m
ul

ci
lk

so
rt(

ex
pt

in
ts

eq
)

ci
lk

so
rt(

ra
nd

in
ts

eq
)

fib

m
at

ch
in

g(
eg

gr
id

2d
)

m
at

ch
in

g(
eg

rlg
)

m
at

ch
in

g(
eg

rm
at

)

M
IS

(g
rid

2d
)

M
IS

(rl
g)

M
IS

(rm
at

)

hu
ll(

pl
um

m
er

2d
)

hu
ll(

un
ifo

rm
2d

)

Shared deques
Recv.−init.
Sender−init.
Cilk Plus

no
rm

al
ize

d 
ex

ec
ut

io
n 

tim
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 r
un

 t
im

e

concurrent deques

sender init
receiver init

Cilk Plus

Friday, July 5, 13



Analytical model

16

δ polling interval

F maximal number of forks in a path

P number of cores

T1 serial run time

T∞ minimal run time with infinite cores

TP parallel run time with P cores

Friday, July 5, 13



Our main analytical result

17

E [TP ]  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(F )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

Friday, July 5, 13



Our main analytical result

17

E [TP ]  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

cost of steals

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(F )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

Friday, July 5, 13



Our main analytical result

17

E [TP ]  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(cF )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

Bound for greedy schedulers:

cost of steals

polling 
overhead

Bound for concurrent deques (ignoring cost of fences):

Bound for our two algorithms:

TP  T1
P + P�1

P T1

E [TP ]  T1
P + P�1

P T1 + O(F )

E [TP ] 
�
T1
P + P�1

P T1 + O(�F )
�
·
⇣
1 + O(1)

�

⌘

1

cost of steals

Friday, July 5, 13



Conclusion

• We presented two new private-deques 
algorithms, evaluated them, and proved 
analytical results.

• In the paper, we demonstrated the 
flexibility of private deques by 
implementing the steal half policy.

18

Friday, July 5, 13


