Scheduling Parallel Programs by Work Stealing with Private Deques

Umut Acar Carnegie Mellon University Arthur Charguéraud

Mike Rainey Max Planck Institute for Software Systems

PPoPP

- Goal: dynamic load balancing
- A centralized approach: does not scale up
- Popular approach: work stealing
- Our work: study implementations of work stealing

Concurrent deques

- Deques are shared.
- Two sources of race:
 - between thieves
 - between owner and thief
- Chase-Lev data structure resolves these races using atomic compare&swap and memory fences.

Concurrent deques

• Well studied: shown to perform well both in theory and in practice ...

however, researchers identified two main limitations

- Runtime overhead: In a relaxed memory model, pop must use a memory fence.
- Lack of flexibility: Simple extensions (e.g., steal half) involve major challenges.

Previous studies of private deques

Feeley	1992	Multilisp
Hendler & Shavit	2002	С
Umatani	2003	Java
Hirashi et al.	2009	С
Sanchez et al.	2010	С
Fluet et al.	2011	Parallel ML

Private deques

- Each core has exclusive access to its own deque.
- An idle core obtains a task by making a steal request.
- A busy core regularly checks for incoming requests.

Private deques

Addresses the main limitations of concurrent deques:

- no need for memory fence
- flexible deques (any data structure can be used)

but

- new cost associated with regular polling
- additional delay associated with steals

Unknowns of private deques

• What is the best way to implement work stealing with private deques?

• How does it compare on state of art benchmarks with concurrent deques?

• Can establish tight bounds on the runtime?

Unknowns of private deques

 What is the best way to implement work stealing with private deques?

We give a receiver- and a sender-initiated algorithm.

 How does it compare on state of art benchmarks with concurrent deques?

We evaluate on a collection of benchmarks.

• Can establish tight bounds on the runtime?

We prove a theorem w.r.t. delay and polling overhead.

Friday, July 5, 13

From receiver to sender initiated

- Receiver initiated: each idle core targets one busy core at random
- Sender initiated: each busy core targets one core at random
- Sender initiated idea is adapted from distributed computing.
- Sender initiated is simpler to implement.

Performance study

- We implemented in our own C++ library:
 - our receiver-initiated algorithm
 - our sender-initiated algorithm
 - our Chase-Lev implementation
- We compare all of those implementations against Cilk Plus.

Benchmarks

- Classic Cilk benchmarks and Problem Based Benchmark Suite (Blelloch et al 2012)
- Problem areas: merge sort, sample sort, maximal independent set, maximal matching, convex hull, fibonacci, and dense matrix multiply.

Analytical model

- P number of cores
- T_1 serial run time
- T_{∞} minimal run time with infinite cores
- T_P parallel run time with P cores
- δ polling interval
- F maximal number of forks in a path

Our main analytical result

Bound for greedy schedulers:

$$T_P \leq \frac{T_1}{P} + \frac{P-1}{P}T_\infty$$

Bound for concurrent deques (ignoring cost of fences): $\mathbb{E}[T_P] \leq \frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(F)$

Bound for our two algorithms:

$$\mathbb{E}\left[T_P\right] \leq \left(\frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(\delta F)\right) \cdot \left(1 + \frac{O(1)}{\delta}\right)$$

Our main analytical result

Bound for greedy schedulers:

$$T_P \leq \frac{T_1}{P} + \frac{P-1}{P}T_\infty$$

Bound for concurrent deques (ignoring cost of fences): $\mathbb{E}[T_P] \leq \frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(F)$ cost of steals Bound for our two algorithms: $\mathbb{E}[T_P] \leq \left(\frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(\delta F)\right) \cdot \left(1 + \frac{O(1)}{\delta}\right)$

Our main analytical result

Bound for greedy schedulers:

$$T_P \leq \frac{T_1}{P} + \frac{P-1}{P}T_\infty$$

Bound for concurrent deques (ignoring cost of fences): $\mathbb{E}[T_P] \leq \frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(F)$ cost of steals Bound for our two algorithms: $\mathbb{E}[T_P] \leq \left(\frac{T_1}{P} + \frac{P-1}{P}T_{\infty} + O(\delta F)\right) \cdot \left(1 + \frac{O(1)}{\delta}\right)$ cost of steals polling overhead

Conclusion

- We presented two new private-deques algorithms, evaluated them, and proved analytical results.
- In the paper, we demonstrated the flexibility of private deques by implementing the steal half policy.