
Heartbeat Scheduling  

Umut Acar Arthur Charguéraud

Mike Rainey

Adrien Guatto

Filip Sieczkowski

Provable Efficiency for Nested Parallelism

Carnegie Mellon
University and Inria

Inria & University of
Strasbourg, ICube

Inria

InriaInria & Indiana
University

Motivation: make it easier to write high-
level and efficient fork-join parallel code

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Fork point
enables calls to

go in parallel

Join point blocks
until both calls

return

Applies
function f to

iterates in the
range [lo, hi)

Running example:
(using notation of the Cilk language extensions for C/C++)

Fibers and their overheads
• We consider languages with support for fork

join, on a multicore system.

• Every fork point potentially creates a fiber.

• Each fiber creation imposes a noticeable cost
at runtime.

• The total cost can range from a few percent to
a large enough to negate parallelism.

fiber =
representation of
a fork point that

can move
between cores by

load balancing

aka: task
descriptor,
lightweight

thread, spark,
etc.Can we design a runtime technique

that ensures, for any fork-join
program, bounded overheads on the

overall cost of fiber creation?

Related work & contribution
Main approaches to taming fiber-creation overheads

Related work & contribution
Main approaches to taming fiber-creation overheads

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Related work & contribution
Main approaches to taming fiber-creation overheads

Reduce the number of fibers created
(i.e., prune excess parallelism)

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Related work & contribution
Main approaches to taming fiber-creation overheads

Granularity control:

Prediction of running time
to throttle fiber creation

(depends on predicting
execution time, requires

additional information, not
always available)

Reduce the number of fibers created
(i.e., prune excess parallelism)

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Related work & contribution
Main approaches to taming fiber-creation overheads

Granularity control:

Prediction of running time
to throttle fiber creation

(depends on predicting
execution time, requires

additional information, not
always available)

Lazy Scheduling:

 Delay creating a fiber until it’s
needed to realize parallelism

(no formal guarantees;
known adversarial inputs)

Reduce the number of fibers created
(i.e., prune excess parallelism)

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Related work & contribution
Main approaches to taming fiber-creation overheads

Granularity control:

Prediction of running time
to throttle fiber creation

(depends on predicting
execution time, requires

additional information, not
always available)

Lazy Scheduling:

 Delay creating a fiber until it’s
needed to realize parallelism

(no formal guarantees;
known adversarial inputs)

Reduce the number of fibers created
(i.e., prune excess parallelism)

Reduce the cost of each
fiber creation

(useful, but not sufficient)

Heartbeat Scheduling: a runtime technique that, for any fork join program and any input,
ensures provably small overheads and good utilization.

Scheduling fork-join programs
void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

spawn map(…)

map(…) sync

Ready fibers

(what the scheduler
sees at any instant)

map(…)

Time

Compiler Runtime
(where the
scheduling

occurs)

Decision to be made by the
runtime for each fork point

Sequentialize latent parallelism

Enable latent parallelism

Delay latent parallelism

Delay creating a
fiber, in case the
fork point ends

up being excess
parallelism

The problem with manual
granularity control

• The calling context

• e.g., function f might perform little to a
lot of work, might perform a call to map

• The execution environment

• Vagaries of chip architecture

• Number of cores

• Operating system / software environment

An acceptable setting of grain
depends on: 
(Tzannes et al 2014)

void map(lo, hi, f)
 if hi - lo < grain
 foreach i in [lo, hi)
 f(i)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Manual granularity control
degrades code quality and is not

performance portable.

Manual
serializing for

small calls

Heartbeat scheduling

• At runtime, each core keeps track of how long it’s been since the
previous fiber creation.

• When it’s been long enough, the core inspects the call stack of
its current running fiber.

• If there’s some latent parallel call in the call stack, the core
promotes the parallel call into a new fiber.

Key idea: amortize fiber-creation overhead against past work

Time…

…

Promotion

is amortized against

past work

How heartbeat scheduling works

main()

map(0,4,f)

map(0,2,f)

Heartbeat (alarm
clock fires every

h cycles)

⏱

void main()
 map(0,4,f)
 return

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

How heartbeat scheduling works

main()

map(0,4,f)

map(0,2,f)

Heartbeat (alarm
clock fires every

h cycles)

⏱
Promotion

void main()
 map(0,4,f)
 return

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Snapshot of the call
stack, just after

second recursive call
to map.

The stack grows
down.

How heartbeat scheduling works

main()

map(0,4,f)

map(0,2,f)

map(2,4,f)Heartbeat (alarm
clock fires every

h cycles)

⏱
Promotion

Create a new
fiber

void main()
 map(0,4,f)
 return

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Snapshot of the call
stack, just after

second recursive call
to map.

The stack grows
down.

How heartbeat scheduling works

main()

map(0,4,f)

map(0,2,f)

map(2,4,f)Heartbeat (alarm
clock fires every

h cycles)

⏱
Promotion

Split the stack

Create a new
fiber

void main()
 map(0,4,f)
 return

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Snapshot of the call
stack, just after

second recursive call
to map.

The stack grows
down.

How heartbeat scheduling works

main()

map(0,4,f)

map(0,2,f)

map(2,4,f)Heartbeat (alarm
clock fires every

h cycles)

⏱
Promotion

Split the stack

Create a new
fiber

Register
dependency

edges

void main()
 map(0,4,f)
 return

void map(lo, hi, f)
 if lo <= hi
 return
 else if lo + 1 == hi
 f(lo)
 return
 int mid = (lo + hi) / 2
 spawn map(lo, mid, f)
 map(mid, hi, f)
 sync

Snapshot of the call
stack, just after

second recursive call
to map.

The stack grows
down.

Cost model and time bound

Work

w = total # of vertices

Span

s = length of critical
path

Work

w = 21

Span s = 10Critical path

Cost model and time bound

Work

w = total # of vertices

Span

s = length of critical
path

Work

w = 21

Span s = 10Critical path

Expected time to
execute on p cores

E[tp] ≤ w/p + O(s)
Work-stealing bound:
(Blumofe & Leiserson)

For any fork-join program:
The bound accounts
for the cost of load

balancing fibers, but
assigns to each

scheduling operation
a unit cost.

Time bound for heartbeat scheduling

w Work (total # vertices)

s Span (critical-path length)

Definitions:

tp Running time of the
program on p cores

Work stealing: E[tp] ≤ w/p + O(s)

Time bound for heartbeat scheduling

w Work (total # vertices)

s Span (critical-path length)

Definitions:

tp Running time of the
program on p cores

Work stealing: E[tp] ≤ w/p + O(s)

…

τ Cost of creating
a fiber

h Heartbeat duration

(Per fiber overhead = τ/h.)

Time bound for heartbeat scheduling

w Work (total # vertices)

s Span (critical-path length)

Definitions:

tp Running time of the
program on p cores

h = kτ
We can pick h

to be a
multiple k of τ.

Work stealing: E[tp] ≤ w/p + O(s)

…

τ Cost of creating
a fiber

h Heartbeat duration

(Per fiber overhead = τ/h.)

Time bound for heartbeat scheduling

w Work (total # vertices)

s Span (critical-path length)

Definitions:

tp Running time of the
program on p cores

h = kτ
We can pick h

to be a
multiple k of τ.

Work stealing: E[tp] ≤ w/p + O(s)

1. Bounded
increase in
overheads

(e.g., 5% of work, if
k = 20)

2. Bounded
increase in
the span

E[tp] ≤ w/p + (1/k * w/p) + O(k * s)Work stealing with
heartbeat, accounting
for sched. overheads:

…

τ Cost of creating
a fiber

h Heartbeat duration

(Per fiber overhead = τ/h.)

Prototype implementation

main()

map(0,4,f)

map(0,2,f)

Cactus stack
(+ heartbeat acceleration structure)

Promotable frames are
linked together by a

doubly linked list

Heartbeat mechanism

⏱The heartbeat can be
realized by software
polling or hardware

interrupts.

Need to wake up and
try to promote ≈

20-50μs.

Native support for parallel loops

Should avoid
introducing a new

stack frame for each
parallel loop
invocation.

Our solution: extend
frame representation

to expose loop
descriptor.

For calling
convention: we use
the classic cactus-

stack representation.

Bookkeeping needed
because we need

O(1) access to top-
most promotable

frame.

Experimental results

%
difference

in
execution

time
between

Heartbeat
and

baseline Lower is
better for

Heartbeat.

Baseline = original
authors’ Cilk code

Ran on machine with 1TB
RAM, using all 40 cores

Experimental results

%
difference

in
execution

time
between

Heartbeat
and

baseline Lower is
better for

Heartbeat.

Baseline = original
authors’ Cilk code

Ran on machine with 1TB
RAM, using all 40 cores

Heartbeat is almost always
faster than the baseline,
sometimes a little slower

Experimental results

%
difference

in
execution

time
between

Heartbeat
and

baseline Lower is
better for

Heartbeat.

Baseline = original
authors’ Cilk code

Ran on machine with 1TB
RAM, using all 40 cores

Heartbeat is almost always
faster than the baseline,
sometimes a little slower

Code simplification: the baseline
codes use several manual

granularity-control techniques.

Heartbeat uses none!

Related work
Formal bounds for scheduling fork join

Prediction-based methods

Lazy-scheduling methods

Brent ’74, Arora et al ’98, Blumofe &
Leiserson ’99, Agarwal et al ’07, Acar et
al ‘11

Heartbeat is the first to show
analytical bounds on

scheduling overheads for all
fork join programs.

Heartbeat is the first in this
class of approaches to have a

state-of-the-art
implementation and be
backed by end-to-end

bounds.

Heartbeat offers similar but
stronger guarantees than
Oracle-Guided Granularity

Control, and delivers state-of-
the-art in performance.

Weening ’89, Pehoushek et al ’90, Lopez
et al ’96, Duran et al ’08, Acar et al ’16,
Iwasaki et al ’16, Shintaro et al ‘16

Mohr et al ’91, Feeley ’93, Goldstein et al
’96, Frigo et al ’98, Imam et al ’14,
Tzannes et al ‘14

Conclusion
• Heartbeat scheduling supports really lightweight nested parallelism:

• It simplifies code: no need for manual granularity control.

• It is protected by formal bounds from adversary programs.

• It can, on ten benchmarks, achieve comparable or better
performance to Cilk, a carefully engineered implementation.

• Future work:

• Optimized compiler implementation

• Generalizing beyond fork join (e.g., futures)

• Thanks for you attention!

