Efficient Representations for Large Dynamic Sequences in ML

Arthur Charguéraud

Inria
arthur.chargueraud@inria.fr

Growable containers

When the maximal number of elements that may be inserted into
a container, such as a stack, a queue or a double-ended queue, is
not known in advance, the container needs to grow dynamically.
Growable containers are most frequently implemented on top of
functional or imperative lists, or on top of vectors (i.e., resizable
arrays). Yet, lists and vectors are inefficient in both space and time.

Lists require the allocation of a three-word object for each
item. Furthermore, traversing lists involves numerous indirections,
slowing down iteration and GC processing. Other tree structures that
store elements in leaves typically suffer from the same drawbacks.

Vectors typically require two words per item due to the resizing
strategy. Worse, upon shrinking, resizing typically takes place when
the vector becomes quarter full. As such, it requires up to four
words per item. (Other ratios are possible, but they lead to poorer
performance.) Furthermore, vector resizing operations have a cost
that, while amortized, nevertheless adds to the constant factors. The
cost of copying is especially visible for long sequences, for which
the copy operation triggers numerous cache misses.

Since growable containers are ubiquitous in programming, there
is ample motivation to seek space-efficient (and time-efficient)
representations of growable containers. Signifiant gains may be
expected for containers storing large numbers of elements.

Chunks: towards compact representations

One classic approach to obtaining compact (space-efficient) rep-
resentations of dynamic sequence data structures (stacks, queues,
double-ended queues, and strings) is to store elements in chunks,
where each chunk is essentially a fixed-capacity array. The exact
representation depends on the set of operations supported, and on
whether the data structure is ephemeral (i.e. with destructive updates)
or fully-persistent (i.e. similar to a purely-functional structure).
For example, an ephemeral chunk supporting stack operations
may be represented as a record made of an array of size K and
an integer storing the number of elements stored in the chunk.
For example, a persistent chunk supporting stack operations may
be represented efficiently by exploiting sharing when possible.
We represent a persistent chunk as a pointer to an ephemeral
chunk, called the support, and an integer representing the size
of the persistent chunk. The idea is that the persistent chunk is
a subsequence of its support. The support may be shared by several
persistent chunks: by the results of pop operations and the results of
push operations that increase the size of the support for the first time.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissi .org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

ML Workshop 17 XXX
Copyright ® 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM XXX...$15.00

Mike Rainey
Inria
mike.rainey@inria.fr

(Other push operations require a full copy of the support chunk.)
Details are given in the appendix.

Typically, all chunks but the ones at the ends of the sequence are
full. Thus, the only memory overhead consists of these chunks, plus
a constant overhead per chunk, for its header and for the linking
between the chunks. Overall, the total space usage for a sequence
of n single-word items stored in chunks of capacity K is of the
form (1 + O(1)/K)n + O(K) words. For K > 128 and non-tiny
sequences, we require roughly 1.1n words. This bound is clearly
much better than 3n (for lists), or between 2n and 4n (for vectors).

In addition to space-efficiency, chunk-based data structures bring
additional significant benefits: (1) an element is written exactly once
into a chunk, and thereafter never needs to be moved (unlike with
vector resizing operations), thus saving on the number of memory
operations required, (2) iteration over the elements benefits from
good locality compared with lists or trees, (3) the use of chunks
eases the work of the GC: faster traversal of data, and allocation of
small blocks, always of the same size.

In what remains, we present two benchmark results. Our aim is
not to make general conclusions, but simply to convince the reader
that, beyond the theoretical benefits of chunk-based data structures
in terms of space efficiency, such structures may deliver optimal
performance time-wise in a number of practical applications.

Benchmark on LIFO operations

We benchmark the following stack data structures:

e A non-resizable array (called stack_array), of size length (a
parameter that varies in the experiment), paired in a record with
an integer that keeps track of the size of the stack.

e A reference on a purely functional list of elements.

e A vector, implemented as a record of an array and an integer
keeping track of the size. When the array is full, its size gets
doubled, when the array is less than 1/4 full, its size gets halved.

e Our ephemeral chunked stack, which is made of one partially-
filled chunk and a purely functional list of full chunks. For the
chunk capacity, we use i = 256, as preliminary investigations
show that larger values do not reduce the overheads any further.

¢ A reference on our persistent chunked stack, which is like its
ephemeral counterpart, but uses persistent chunks.

Our test program repeats the following sequence of operations:
push length items into the stack, then pop all these items. It stops
when 40 million operations (20m push and 20m pop) are performed.
Figure|[T]shows results for various values of the length parameter.

e The non-resizable array is usually the fastest structure, although
it is slightly outperformed by lists for short sequences (because
allocation is sometimes cheaper than mutation in OCaml).

e The list-based stack delivers best performance for stacks of up
to 10k elements; however, it becomes the slowest of all the
benchmarked structures for stacks of more than 100k elements.

< _| X seqg=list_ref
— | ¢ seg=vector
A seq=pchunked_stack_ref_256
& - = seg=chunked_stack_256
Vv seg=stack_array
e
—
3]
0
£ 3
o
Q
x
o ©
<4
<
o
~N
34
o
o T T T
1le+02 1le+04 le+06
length

Figure 1. LIFO experiment. Repeatedly creating stacks of length
items, until 40 million operations are performed in total.

e The vector-based stack is always quite slow, between 2x and 3x
slower than a non-resizable array. This result is not so surprising
after all, given the need to pay for all the resizing operations.
(The irregularity of the curve is a consequence of the fact that
input sizes are not powers of 2.)

The ephemeral chunked stack is at most 1.5x slower than the
non-resizable array.

The persistent chunked stack is at most 2x slower than the non-
resizable array. (Note: this benchmark makes single-threaded
use of the stack, and thus never triggers any chunk copy.)

Benchmark on string buffer operations

We specialize our stack data structure to implement an extensible
string interface. We consider not just an ephemeral string buffer,
but also a persistent string buffer: any string version that is created
during the process remains forever a valid description of that string.

We benchmark it against the Buffer module from OCaml’s
standard library. The buffer, initially empty, gets appended with
words of various sizes until its size grows to 1 billion. The words
that are appended are preallocated in the beginning, and they have
length between one and max_word_length (a parameter that varies
in the experiment). There is exactly one word of each length, and
these words are appended to the buffer in round-robin fashion.

As shown by the results from Figure[2] our ephemeral chunked
string buffer is competitive with (or outperforms) the buffer from the
standard library. Our persistent buffers are almost as efficient as our
ephemeral buffers. As expected, they are slightly slower when the
words pushed are really small (on average 25 characters or fewer),
but not by so much.

Concatenation, splitting and random access

To support push and pop operations at either just one or both ends of
a sequence, it suffices to maintain a linked list between the chunks
that make up the sequence. However, to support more advanced
sequence operations, such as concatenation, splitting, or random
access, one needs to introduce a fancier tree structure in which to
store the chunks. In practice, we may use a finger tree (Hinze and
Paterson|2006), or a bootstrapped chunked sequence (Acar et al.
2014), a simpler structure with fairly similar bounds in practice.
We have already implemented concatenation and splitting for
ephemeral sequences. We are currently working on supporting these
operations on persistent sequences. One particularly promising
application is the design of fully-persistent strings with support for
concatenation and substring operations, both in logarithmic time.

length=1000000000

6 m seg=stdiib_buffer
B seq=pchunked_string_4096
5 B seq=chunked_string_4096

exectime

N

]

]

1 I

N = B
o

=) o Q o
= N o) S S
il il i Ire} S
s s =] A I
=3 =) =) =} o
=4 f=4 c j=2) =
g g 8 £ =
| | I k) <
2 2 2 | =
S S S 2 -
B E E [} =
| | ><‘ 3‘ g
3 3 < x |
£ £ £ g %
€

Figure 2. String buffer experiment. Words, each of length between
1 and max_word_length, are repeated added to the buffer, until the
buffer contains 1 billion characters.

Ongoing work includes: (1) support for efficient iterators, includ-
ing random-access iterators; (2) development of adaptative variants
of our structures to provide space-efficient representation of short
sequences; (3) investigation of alternative methods to deal with per-
sistence, following the approach of transient structures popular in
the Clojure language, whereby the user may dynamically switch
between an ephemeral view and a persistent view, to leverage the
benefits of both; and (4) more extensive benchmarking, in particular
on real-life programs.

Related work

There exists a representation of resizable arrays that guarantees at
most \/n wasted space, and that supports random-access in at most
two indirections (Brodnik et al.[|1999). However, this structure does
not seem to generalize to queue operations, and it cannot support
concatenation or splitting.

Finger trees (Hinze and Paterson/2006) provide purely-functional
sequences with asymptotics that provide push and pop at both ends
in amortized constant time and split and concat in logarithmic time,
yet with poor constant factors.

Haskell’s yi package (et al|2010) implements strings by instanti-
ating a finger-tree with chunks of characters in the leaves. However,
iterated concatenation of tiny strings might result in very problem-
atic situations, e.g. where each chunk of capacity 512 characters
stores only 2 characters (see (Acar et al.|2014), p4).

Chunked sequences (Acar et al.|[2014) provide ephemeral se-
quences, with similar asymptotics as finger trees, but with excellent
constant factors. We have adapted chunked sequences to derive per-
sistent sequences. In worst-case scenarios with persistence, push
and pop operations might degrade to logarithmic time. This is not
much of an issue beacuse in chunked sequences the log is in base K,
and log - n < 7 for all practical purposes.

Relaxed Radix Balanced (RRB) vectors (Stucki et al.[[2015)
provide a representation of persistent sequences. The authors report
performance results for a Scala implementation. However, we are
not aware of any formal analysis of the space overheads and number
of allocations involved with this data structure. A more detailed
comparison is a matter for future work.

Early work on Lisp systems proposes the technique of cdr-coding
to optimize the use singly linked lists by coalescing chunks on
the fly (Deutsch||1973). More recent work proposes a compiler
optimization that performs a similar optimization for ML-like
languages (Shao et al.[|[1994).

T I S R

Acknowledgements

This research was partially supported by the French National
Research Agency (ANR) under the grant ANR-15-CE25-0008, and
partially supported by European Research Council grant ERC-2012-
StG-308246.

References

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Theory and prac-
tice of chunked sequences. In Algorithms - ESA 2014 - 22th Annual
European Symposium, Wroclaw, Poland, September 8-10, 2014. Pro-
ceedings, pages 25-36, 2014. URL http://dx.doi.org/10.1007/
978-3-662-44777-2_3|

Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Ian Munro,
and Robert Sedgewick. Resizable Arrays in Optimal Time and Space,
pages 37-48. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
ISBN 978-3-540-48447-9. doi: 10.1007/3-540-48447-7_4. URL http:
//dx.doi.org/10.1007/3-540-48447-7_4|

L. Peter Deutsch. A lisp machine with very compact programs. In Proceed-
ings of the 3rd International Joint Conference on Artificial Intelligence,
TJCAI'73, pages 697-703, San Francisco, CA, USA, 1973. Morgan Kauf-
mann Publishers Inc. URLhttp://dl.acm.org/citation.cfm?id=
1624775.1624860.

Jean-Philippe Bernardy et al. The Haskell yi package, 2010. https!
//github.com/yi-editor/yi.

Ralf Hinze and Ross Paterson. Finger trees: A simple general-purpose
data structure. Journal of Functional Programming, 16(2):197-217,
March 2006. ISSN 0956-7968. doi: 10.1017/S0956796805005769. URL
http://dx.doi.org/10.1017/S0956796805005769.

Zhong Shao, John H. Reppy, and Andrew W. Appel. Unrolling lists. In
Proceedings of the 1994 ACM Conference on LISP and Functional
Programming, LFP 94, pages 185-195, New York, NY, USA, 1994.
ACM. ISBN 0-89791-643-3. doi: 10.1145/182409.182453. URL
http://doi.acm.org/10.1145/182409.182453|

Nicolas Stucki, Tiark Rompf, Vlad Ureche, and Phil Bagwell. RRB
vector: A practical general purpose immutable sequence. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 342-354, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3669-7. doi: 10.1145/2784731.2784739. URL
http://doi.acm.org/10.1145/2784731.2784739.

Appendix

Representation of ephemeral chunked stacks

type ’a chunk = {
data : ’a array;
mutable size : int; }
(* [0 <= size <= data.length = capacity] *)

type ’a stack = {
mutable head :
mutable tail :

’a chunk;
(’a chunk) list; }

To support both an efficient length-query operation and a random-
access operation that requires just two indirections, we may change
the tail representation from a list of chunks to a vector of chunks.
This change makes the structure more generally useful, but does so
at the cost of only a tiny amount of space and time overhead.

Our actual implementation includes a secondary head chunk.
This chunk is always either empty of full. Its role is to protect
against worst-case scenarios of alternating push/pop operations that
might otherwise repeatedly trigger a chunk allocation immediately
followed by its deallocation. For use cases where worst-case patterns
are unlikely to happen, one may use the simplified representation
shown above.

® 9 o v oA W D -

Representation of persistent chunked stacks

type ’a pchunk = {
support : ’a chunk; (* support may be shared *)
size int; }
(* [0 <= size <= support.size, with items from
support.data. (0) to support.data.(size-1). *)

type ’a pstack = {
head : ’a pchunk;
tail : (’a pchunk) list; }

For a push operation, there are two cases. If size is equal to
support.size, then we write the new element in the support.data
array at index size. (Indeed, the corresponding slot is previously
unused.) We then increment support.size, and return a chunk
object with the same support and a size field increased by one
unit. Otherwise, we need a copy-on-write operation: we allocate a
fresh support object with a fresh array, and we copy the relevant
elements. This case is more expensive, but is less frequent in most
applications.

For a pop operation, the support may always be shared: we
simply allocate chunk object with the same support and a size field
decreased by one unit.

Experimental setup

Executed on a 64bit Intel Core 17-4600U CPU running at 2.10GHz
(4 cores, only 1 used), with 8Gb RAM, 4MB L3 cache, 256kb L2
cache, 32kb L1 cache. OS is Ubuntu 14.04.

Compiled with OCaml v4.04.0, with flambda support for inlining
(using ocamlopt -02 -unsafe -noassert).

Each time measure is averaged over 5 runs.

http://dx.doi.org/10.1007/978-3-662-44777-2_3
http://dx.doi.org/10.1007/978-3-662-44777-2_3
http://dx.doi.org/10.1007/3-540-48447-7_4
http://dx.doi.org/10.1007/3-540-48447-7_4
http://dl.acm.org/citation.cfm?id=1624775.1624860
http://dl.acm.org/citation.cfm?id=1624775.1624860
https://github.com/yi-editor/yi
https://github.com/yi-editor/yi
http://dx.doi.org/10.1017/S0956796805005769
http://doi.acm.org/10.1145/182409.182453
http://doi.acm.org/10.1145/2784731.2784739

	Growable containers
	Chunks: towards compact representations
	Benchmark on LIFO operations
	Benchmark on string buffer operations
	Concatenation, splitting and random access
	Related work

